

SNS COLLEGE OF TECHNOLOGY Coimbatore

	TRANSFOR	RMS AN	D PARTIAL DIFFERENTIAL EQUATIONS								
			UNIT – I								
FOURIER SERIES											
			PART A								
1.	Pick out the even function x^2 , $\sin x$, $1+x$, e^x										
	a. x^2		b. x^2 , $\sin x$								
	c. <i>e</i> ^x		d. x^2 , e^x	Ans	:	a					
2.	The period of tan x is										
	a. $\pi/2$	b. <i>π</i>									
	c. $3\pi / 2$	d. 2π		Ans	:	b					
3.	The value of a_0 in the Fourier series of $f(x) = x$ in $(0, 2\pi)$ is										
	a. 0	b. 2π									
	c. 4 <i>\pi</i>	$d.\pi$		Ans	:	b					
4.	The value of b_n in the e	expansio	on of x^2 as a Fourier series in $(-\pi, \pi)$ is								
	a. $2\pi^3/3$	b. π^3	/3								
	c. $3\pi^2/2$	d. 0		Ans	:	d					
5.	The value of a_n in the F	ourier s	eries of $f(x)$ in $(0, 1)$ is								
	1^{l}		$1 \int_{-\infty}^{l} n\pi x$								
	a. $\int_{0}^{\infty} f(x) \cos nx$	x dx	b. $\frac{1}{l} \int_{0}^{l} f(x) \cos \frac{n\pi x}{l} dx$								
	$c. \frac{2}{l} \int_{0}^{l} f(x) \cos nt$	x dx	d. $\frac{2}{l} \int_{0}^{l} f(x) \cos \frac{n\pi x}{l} dx$	Ans	:	d					
6.	5. The value of a_0 in the Fourier series of $f(x)$ in $(0, 1)$ is										
	a. $\frac{2}{l} \int_{0}^{l} f(x) \cos nx$	x dx	b. $\frac{2}{l} \int_{0}^{l} f(x) \cos \frac{n\pi x}{l} dx$								

a.
$$\frac{2}{l} \int_{0}^{l} f(x) \cos nx \, dx$$
 b.
$$\frac{2}{l} \int_{0}^{l} f(x) \cos \frac{n\pi x}{l} \, dx$$
 c.
$$\frac{2}{l} \int_{0}^{l} f(x) dx$$
 d.
$$\frac{2}{l} \int_{0}^{l} f(x) \sin nx \, dx$$
 Ans: c

7. The root mean square value of f(x) = x in (0, 1) is

b.
$$l/\sqrt{3}$$

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

c. $\sqrt{l/3}$	d. $\sqrt{l}/3$	Ans:	b
e value of the cor	stant term in the Fourier series corresponding	onding to	
$f(x) = x - x^3$ in ((π,π) is		

$$f(x) = x - x^3$$
 in $(-\pi, \pi)$ is
a. $\pi - \pi^3$ b. π
c. π^3 d. 0 **Ans** : **d**

- 9. The value of the constant a_0 in the Fourier series of $(\pi x)^2/4$, $0 < x < 2\pi$ is
 - a. $2\pi^2/3$ b. $\pi^2/3$ c. $\pi^2/6$ d. π^2 Ans : c
- 10. The Fourier series of $f(x) = (\pi x)^2/4$, $0 < x < 2\pi$ converges to _____ at x = 0 a. $2\pi^2/3$ b. $\pi^2/3$
 - a. $2\pi/3$ b. $\pi/3$ c. $\pi^2/4$ d. π^2 Ans : c
- 11. The value of the a_n in the Fourier expansion of K, on (0, 10) is
 - a. 10 b. $2K/n\pi$ c. Π d. 0 Ans : d
- 12. Parseval's Identity of f(x) with period 2l in (-l, l)

8.

The

a.
$$\frac{1}{2l} \int_{-l}^{l} [f(x)]^{2} dx = \frac{a_{0}^{2}}{4} + \frac{1}{2} \sum_{1}^{\infty} [a_{n}^{2} + b_{n}^{2}]$$
b.
$$\frac{1}{2l} \int_{-l}^{l} [f(x)]^{2} dx = \frac{a_{0}^{2}}{4} + \sum_{1}^{\infty} [a_{n}^{2} + b_{n}^{2}]$$
c.
$$\frac{1}{l} \int_{-l}^{l} [f(x)]^{2} dx = \frac{a_{0}^{2}}{4} + \frac{1}{2} \sum_{1}^{\infty} [a_{n}^{2} + b_{n}^{2}]$$
d.
$$\int_{-l}^{l} [f(x)]^{2} dx = \frac{a_{0}^{2}}{4} + \frac{1}{2} \sum_{1}^{\infty} [a_{n}^{2} + b_{n}^{2}]$$
Ans: a

13. If a periodic function f(x) is even in (-l, l), then $a_0 \square is$

a.
$$\frac{1}{l} \int_{0}^{l} f(x) dx$$
 b. $\frac{2}{l} \int_{0}^{l} f(x) dx$ c. $\frac{2}{l} \int_{-l}^{l} f(x) dx$ d. 0 Ans : **b**

- 14. The function $f(x) = \frac{1}{1-x}$ is
 - a. Continuous at x = 1
 b. Discontinuous at x = 1
 c. Continuous for all x
 d. Discontinuous at x = 0
 Ans: b
- 15. The value of the b_n in the Fourier expansion of $f(x) = |\sin x|$, in $(-\pi, \pi)$ is
 - a. 0 b. 2π

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

	c. π	d. 4π	Ans : a		
16.	The value of the b	f_n in the Fourier expansion of $f(x) = x$	$\cos x$, in $(-\pi, \pi)$ is		
	a. 0	b. $2\pi/3$			
	c. $4\pi/3$	d. 4π	Ans: a		
17.	e value of the cons	stant a_0 in the Fourier expansion of $f(x)$	$= x - x^2$, in $(-\pi, \pi)$ is		
	a. $\pi - \pi^3$	b. $\pi^2/2-\pi^4/4$			
	c. $\pi/2 - \pi^4/4$	d. 0	Ans: d		
18.	The value of the F	ourier series of $f(x) = \sqrt{1 - \cos x}$ in $(0, 2)$	π) at $x = 0$ is		
	a. 2π	b. 0			
	c. $\sqrt{2}$	d. 2	Ans: b		
10	The value of the o	constant a_0 in the Fourier expansion of f	$f(x) = \int x, \qquad 0 < x < \pi$		
19.	The value of the co	onstant a_0 in the Fourier expansion of f	$(x) = 2\pi - x, \ \pi < x < 2\pi$		
	a. π	b. 2π			
	c. 3π	d. 4π	Ans : a		
20.	The value of the b_n in the Fourier expansion of $f(x) = x $, in $(-\pi, \pi)$ is				
	a. π	b. 2 <i>π</i>			
	c. 3 <i>π</i>	d. 0	Ans : d		
21.	To which value, th	the Fourier series of $f(x) = \begin{cases} l - x, & 0 \\ 0, & l \end{cases}$	0 < x < l 0 < x < 2l converges at $x = 0$		
	a. <i>l</i>	b. <i>l</i> /3			
	c. <i>l</i> /2	d. 2 <i>l</i>	Ans : a		
22.	The value of the co	constant a_n in the Fourier expansion of j	$f(x) = e^x, \ 0 < x < \pi $ is		
	a. 2π	b. $2/\pi$			
	c. 1/π	d. 0	Ans : d		
23.	The value of the constant a_n in the Fourier expansion of $f(x) = \cos x$, $0 < x < \pi$ is				
	a. 2π	b. $2/\pi$			
	c. 1/π	d. 0	Ans : d		
24.	The root mean squ	hare value of $f(x) = x^2, -\pi < x < \pi$ is			
	a. $\pi^4/5$	b. $\pi^{3}/5$			
	c. $\pi^2/5$	d. $\pi/5$	Ans : a		
25.	The root mean squ	hare value of unity in $(0, \pi)$ is			
	a. 1/2	b. 1/3			
	c. 0	d. 1	Ans : d		

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

a.
$$2\pi$$

b.
$$2/\pi$$

c.
$$1/\pi$$

Ans: d

27. In the Harmonic analysis the value of a_0 is

a.
$$\frac{2\sum y}{n}$$

b.
$$\sum y$$

d.
$$\frac{\sum y}{n}$$

Ans : a

28. In the Harmonic analysis the value of a_n is

a.
$$\frac{2\sum y}{n}$$

b.
$$\frac{2\sum y\cos nx}{n}$$

c.
$$\frac{2\sum y \sin nx}{n}$$

Ans: b

29. In the Harmonic analysis the value of b_n is

a.
$$\frac{2\sum y}{n}$$

b.
$$\frac{2\sum y\cos nx}{n}$$

c.
$$\frac{2\sum y \sin nx}{n}$$

Ans: c

30. If x_0 is a continuous point, then the Fourier series of f(x) converges to

a.
$$f(x)$$

b.
$$f(x_0)$$

c.
$$f(0)$$

Ans : b

PART B TWO MARKS

1. Explain periodic function with two examples.

Solution: A function f(x) is said to have a period T if for all x, f(x + T) = f(x),

Where T is a positive constant. The least value of T > 0 is called the period of f(x).

For examples, f(x) = Sinx

$$f(x + 2\pi) = Sin(x + 2\pi) = Sinx$$

Here,
$$f(x) = f(x + 2\pi)$$

2. State Dirichlet's condition for a given function to expend in Fourier series.

Solution: Any function f(x) can be developed as a Fourier series, provided

- i) f(x) is periodic, single valued & finite.
- ii) f(x) has a finite number of discontinuities in any one period
- iii) f(x) has a finite number of maxima and minima
- 3. State general Fourier series.

solution: The Fourier series of f(x) in $c \le x \le c + 2l$ is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l}$$

Where a₀, an &b_n are called Fourier coefficients(or) Euler constants

- 4. Find the coefficient of b_n of cos 5x in the Fourier cosine series of the function
- $f(x) = \sin 5x$ in the in the interval $(0, \pi)$.

Solution: The Fourier Cosine series is

$$b_{n} = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} \cos 5x \cos nx dx$$
$$= \frac{2}{\pi} \int_{0}^{\pi} [\cos(5 + n) x + \cos(5 - n) x] d$$

$$= \frac{2}{\pi} \left[\frac{\sin(5+n)x}{5+n} + \frac{\sin(5-n)x}{5-n} \right]_0^{\pi} = 0; \text{ Therefore, } b_n = 0$$

5. Find the constant a_0 of the Fourier series for the function of f(x) = x in $0 \le x \le 2\pi$

Solution:

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{2\pi} x dx = \frac{1}{\pi} \left(\frac{x^2}{2} \right)_0^{2\pi} = 2\pi$$

6. Obtain the first term of the Fourier series for the function $f(x) = x^2$, $-\pi < x < \pi$.

Solution:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 dx = \frac{2}{\pi} \left(\frac{x^3}{3}\right)_{0}^{\pi} = \frac{2}{3} \pi^2$$

7. If $f(x) = x^3$, $-\pi < x < \pi$. Find the constant term of its Fourier series.

Solution:

$$f(x)=x^3$$
, is an odd function. Therefore, the fourier constants $a_0=0$

8. Find the constant term in the Fourier series expansion of f(x) = x in $(-\pi, \pi)$

Solution:

$$a_0 = 0$$
 since $f(x)$ is an odd function $(-\pi, \pi)$

9. Find the sum of the Fourier series of $f(x) = x + x^2$ in $-\pi < x < \pi$ at $x = \pi$. Solution:

Given
$$f(x) = x + x^2$$

The sum of Fourier series is equal to the arithmetic mean of the value of f(x) at $x = \pi$ and $x = -\pi$.

$$\text{Sum of Fourier series} = \frac{f(\pi) + f(-\pi)}{2} = \frac{\pi + \pi^2 - \pi + \pi^2}{2} = \pi^2$$

10. What is the constant term a_0 and the coefficient of cosnx, a_n in the Fourier series of $f(x)=x-x^3$ in $(-\pi,\pi)$.

Solution:

$$f(x) = x - x^3 => f(-x) = -x + x^3$$
$$= -(x - x^3) = -f(x)$$

Therefore, f(x) is an odd function of x in $(-\pi, \pi)$. Therefore, the Fourier series of f(x) Contains sine terms only. Therefore, $a_0 = 0$ and $a_n = 0$

11. Find the root mean square value of the function $f(x) = x^2$ in the interval (0,1).

Solution:

RMS value =
$$\sqrt{\frac{1}{l} \int_{0}^{1} x^{2} dx} = \sqrt{\frac{1}{l} (\frac{x^{3}}{3})_{0}^{1}} = \sqrt{\frac{1}{l} [\frac{l^{3}}{3}]} = \frac{1}{\sqrt{3}}$$

22. Define root mean square value of a function f(x) in a < x < b.

Solution:

R.M.S. value
$$\bar{y} = \sqrt{\frac{1}{b-a} \int_a^b [f(x)]^2 dx}$$

23 .State Parseval's identity for full range expansion of f(x) as Fourier series in (0,21).

Solution:

$$\frac{1}{l} \int_{0}^{21} (f(x))^{2} dx = \frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}) \text{ where } a_{0}, a_{n} \text{ and } b_{n} \text{ are}$$

Fourier coefficients in the expansion of f(x) as a Fourier series.

25. What do you mean by Harmonic Analysis?

Solution:

The process of finding the Fourier series for a function given by numerical value is known as harmonic analysis. In harmonic analysis

$$a_0 = 2 \text{ (mean value of y in } (0.2\pi))$$

$$a_n=2\;(\text{mean value of y Cos nx in }(0.2\pi))$$

$$b_n = 2$$
 (mean value of y Sin nx in (0.2π))