
SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.

An Autonomous Institution

COURSE NAME : 19CST201 AGILE SOFTWARE ENGINEERING

II YEAR/ III SEMESTER

UNIT – I INTRODUCTION TO SOFTWARE ENGINEERING

UNIT I INTRODUCTION TO SOFTWARE ENGINEERING

The Nature of Software -Software Engineering - Software engineering

Practice – Process Models: Generic – Prescriptive – Specialized -

United Process - Personal and Team Process Models - Process

Technology-Understanding Requirements-Design concepts & model-

Software quality concepts & Review metrics.

Abstraction

Architecture

 Patterns

 Separation of Concerns

Modularity

 Information Hiding

Design Concepts

 Functional Independence

Refinement

Aspects

Refactoring

Object-Oriented Design Concepts

Design Classes

Design Concepts

Abstraction
• Solution to any problem can have many levels of abstraction can be used.

• At the highest level of abstraction, a solution is stated in broad terms using

the language of the problem environment.

• At lower levels of abstraction, a more detailed description of the solution is

provided. Problem-oriented terminology is coupled with implementation-

oriented terminology in an effort to state a solution.

• Finally, at the lowest level of abstraction, the solution is stated in a manner

that can be directly implemented.

• A procedural abstraction refers to a sequence of instructions that have a

specific and limited function.

• A data abstraction is a named collection of data that describes a data

object.

Design Concepts

Architecture
• Software architecture - the overall structure of the software and the ways in which that

structure provides conceptual integrity for a system.

• Structural properties - This aspect of the architectural design representation defines

the components of a system (e.g., modules, objects, filters) and the manner in which

those components are packaged and interact with one another.

• Extra-functional properties. The architectural design description should address how

the design architecture achieves requirements for performance, capacity, reliability,

security, adaptability, and other system characteristics.

• Families of related systems. The architectural design should draw upon repeatable

patterns that are commonly encountered in the design of families of similar systems. In

essence, the design should have the ability to reuse architectural building blocks.

Design Concepts

Architecture
• With these properties, the architectural design can be represented using one or more of

a number of different models :

• Structural models - represent architecture as an organized collection of program

components.

• Framework models - increase the level of design abstraction by attempting to identify

repeatable architectural design frameworks that are encountered in similar types of

applications.

• Dynamic models - address the behavioral aspects of the program architecture,

indicating how the structure or system configuration may change as a function of

external events.

• Process models - focus on the design of the business or technical process that the

system must accommodate. Finally,

• Functional models – can be used to represent the functional hierarchy of a system.

Design Concepts

Patterns

• The intent of each design pattern is to provide a description that

enables a designer to determine

• (1) whether the pattern is applicable to the current work,

• (2) whether the pattern can be reused

• (3) whether the pattern can serve as a guide for developing a similar,

but functionally or structurally different pattern.

Design Concepts

 Separation of Concerns
• Separation of concerns is a design concept that suggests that any complex

problem can be more easily handled if it is subdivided into pieces that can each

be solved and/or optimized independently.

• A concern is a feature or behavior that is specified as part of the requirements

model for the software.

Modularity
• Modularity is the most common manifestation of separation of concerns.

Software is divided into separately named and addressable components,

sometimes called modules, that are integrated to satisfy problem requirements.

 Information Hiding

Design Concepts

Functional Independence :
• Functional independence is achieved by developing functions that perform

only one kind of task and do not excessively interact with other modules.

• Independence is important because it makes implementation more accessible

and faster.

• The independent modules are easier to maintain, test, and reduce error

propagation and can be reused in other programs as well.

• Independence is assessed using two qualitative criteria: cohesion and

coupling.

• Cohesion is an indication of the relative functional strength of a module.

• Coupling is an indication of the relative interdependence among modules.

Design Concepts

 Refinement :

• Stepwise refinement is a top-down design strategy originally proposed by

Niklaus Wirth.

• A program is developed by successively refining levels of procedural detail.

• A hierarchy is developed by decomposing a macroscopic statement of

function (a procedural abstraction) in a stepwise fashion until programming

language statements are reached.

• Refinement helps you to reveal low-level details as design progresses.

Design Concepts

 Aspects
• A feature linked to many other parts of the program, but which is not related to

the program's primary function. An aspect crosscuts the program's core

concerns, therefore violating its separation of concerns that tries to encapsulate

unrelated functions.

Refactoring
• Refactoring is a reorganization technique that simplifies the design (or code) of

a component without changing its function or behavior.

• Fowler defines refactoring - “Refactoring is the process of changing a software

system in such a way that it does not alter the external behavior of the code

[design] yet improves its internal structure.”

Design Concepts

 Object-Oriented Design Concepts

• Classes and objects, inheritance, messages, and polymorphism.

Design Classes

• Design classes that refine the analysis classes by providing design detail that

will enable the classes to be implemented, and implement a software

infrastructure

Design Concepts

Types of Design Classes :
• User interface classes define all abstractions that are necessary for human

computer interaction (HCI).

• Business domain classes identify the attributes and services (methods) that are
required to implement some element of the business domain.

• Process classes implement lower-level business abstractions required to fully
manage the business domain classes.

• Persistent classes represent data stores (e.g., a database) that will persist beyond
the execution of the software.

• System classes implement software management and control functions that enable
the system to operate and communicate within its computing environment and with
the outside world.

Design Concepts

1. Data Design Elements

2. Architectural Design Elements

3. Interface Design Elements

4. Component-Level Design Elements

5. Deployment-Level Design Elements

Design Model

1. Data Design Elements

• Data design (sometimes referred to as data architecting) creates a model

of data and/or information that is represented at a high level of

abstraction (the customer/user’s view of data).

• This data model is then refined into progressively more implementation-

specific representations that can be processed by the computer-based

system.

Design Model

2. Architectural Design Elements :
• The architectural design for software is the equivalent to the floor plan of a

house.

• The floor plan depicts the overall layout of the rooms; their size, shape, and

relationship to one another; and the doors and windows that allow

movement into and out of the rooms

• The architectural model is derived from three sources:

(1) information about the application domain for the software to be built;

(2) specific requirements model elements such as data flow diagrams or

analysis classes, their relationships and collaborations for the problem at hand;

(3) the availability of architectural styles

Design Model

3. Interface Design Elements :
• The interface design for software is analogous to a set of detailed drawings (and

specifications) for the doors, windows, and external utilities of a house.

• These drawings depict the size and shape of doors and windows, the manner in

which they operate.

• There are three important elements of interface design:

(1) the user interface (UI);

(2) external interfaces to other systems, devices, networks, or other producers or

consumers of information

(3) internal interfaces between various design components.

Design Model

4. Component-Level Design Elements:

• The component-level design for software is the equivalent to a set of detailed

drawings (and specifications) for each room in a house. These drawings depict

wiring and plumbing within each room, the location of electrical receptacles and

wall switches, cabinets, and closets.

• The component-level design defines data structures for all local data objects and

algorithmic detail for all processing

Design Model

5. Deployment-Level Design Elements:

• Deployment-level design elements indicate how software functionality and

subsystems will be allocated within the physical computing environment that will

support the software.

Design Model

1. What Is Quality?

2. Software Quality - An effective software process applied in a manner that

creates a useful product that provides measurable value for those who produce

it and those who use it.

• Garvin’s Quality Dimensions

• McCall’s Quality Factors

• ISO 9126 Quality Factors

• Targeted Quality Factors

• The Transition to a Quantitative View

Software Quality Concepts

Garvin’s Quality Dimensions :
• David Garvin suggests that quality should be considered by taking a

multidimensional viewpoint.

• Performance quality. Does the software deliver all content, functions, and

features that are specified as part of the requirements model in a way that provides

value to the end user?

• Feature quality. Does the software provide features that surprise and delight first-

time end users?

• Reliability. Does the software deliver all features and capability without failure? Is

it available when it is needed? Does it deliver functionality that is error-free?

Software Quality Concepts

Garvin’s Quality Dimensions :
• Conformance. Does the software conform to local and external software standards

that are relevant to the application? Does it conform to de facto design and coding

conventions? For example, does the user interface conform to accepted design

rules for menu selection or data input?

• Durability. Can the software be maintained (changed) or corrected (debugged)

without the inadvertent generation of unintended side effects? Will changes cause

the error rate or reliability to degrade with time?

• Serviceability. Can the software be maintained (changed) or corrected (debugged)

in an acceptably short time period? Can support staff acquire all information they

need to make changes or correct defects?

Software Quality Concepts

McCall’s Quality Factors:
• Correctness - The extent to which a program satisfies its specification and fulfills

the customer’s mission objectives.

• Reliability - The extent to which a program can be expected to perform its intended

function with required precision. [It should be noted that other, more complete

definitions of reliability have been proposed.

• Efficiency - The amount of computing resources and code required by a program

to perform its function.

• Integrity - Extent to which access to software or data by unauthorized persons can

be controlled.

• Usability - Effort required to learn, operate, prepare input for, and interpret output

of a program.

Software Quality Concepts

McCall’s Quality Factors:

• Maintainability. Effort required to locate and fix an error in a program

• Flexibility. Effort required to modify an operational program.

• Testability. Effort required to test a program to ensure that it performs its intended

function.

• Portability. Effort required to transfer the program from one hardware and/or

software system environment to another.

• Reusability. Extent to which a program [or parts of a program] can be reused in

other applications—related to the packaging and scope of the functions that the

program performs.

• Interoperability. Effort required to couple one system to another.

Software Quality Concepts

 ISO 9126 Quality Factors:

• Functionality

• Reliability

• Usability

• Efficiency

• Maintainability

• Portability

Software Quality Concepts

Targeted Quality Factors :

• Efficiency

• Robustness - The degree to which the software handles bad input data or

inappropriate user interaction

• Richness - The degree to which the interface provides a rich feature set.

The Transition to a Quantitative View

Software Quality Concepts

3. The Software Quality Dilemma

• “Good Enough” Software

• The Cost of Quality

• Risks

• Negligence and Liability

• Quality and Security

• The Impact of Management Actions

Software Quality Concepts

4. Achieving Software Quality

• Software Engineering Methods

• Project Management Techniques

• Quality Control

• Quality Assurance

Software Quality Concepts

Project Management Techniques :

(1) A project manager uses estimation to verify that delivery dates are

achievable,

(2) Schedule dependencies are understood and the team resists the temptation

to use short cuts,

(3) Risk planning is conducted

Software Quality Concepts

Review Metrics

• Analyzing Metrics

• Cost Effectiveness of Reviews

Review Metrics

Review Metrics :

• Preparation effort, Ep—the effort (in person-hours) required to review a work

product prior to the actual review meeting

• Assessment effort, Ea—the effort (in person-hours) that is expended during the

actual review

• Rework effort, Er —the effort (in person-hours) that is dedicated to the correction of

those errors uncovered during the review

Review Metrics

Review Metrics :

• Work product size, WPS —a measure of the size of the work product that has been

reviewed

• Minor errors found, Errminor —the number of errors found that can be categorized

as minor

• Major errors found, Errmajor —the number of errors found that can be categorized

as major

Review Metrics

1. Analyzing Metrics :

• The total review effort and the total number of errors discovered are defined

as:

Review Metrics

