
SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.

An Autonomous Institution

COURSE NAME : 19CST201 AGILE SOFTWARE ENGINEERING

II YEAR/ III SEMESTER

UNIT – I INTRODUCTION TO SOFTWARE ENGINEERING

UNIT I INTRODUCTION TO SOFTWARE ENGINEERING

The Nature of Software -Software Engineering - Software engineering

Practice – Process Models: Generic – Prescriptive – Specialized -

United Process - Personal and Team Process Models - Process

Technology-Understanding Requirements-Design concepts & model-

Software quality concepts & Review metrics.

SOFTWARE DEFINITION

 Software is: (1) instructions (computer programs) that when

executed provide desired features, function, and

performance; (2) data structures that enable the programs to

adequately manipulate information, and (3) descriptive

information in both hard copy and virtual forms that

describes the operation and use of the programs

ESSENTIAL COMPONENTS OF SOFTWARE

1)INSTRUCTIONS/Programs:

•Functionality

•Performance
The INSTRUCTIONS must be developed

according to the users satisfaction

2) DATA STRUCTURE:

•Essential Components

•Maintains Data

•Algorithms/ Program logic

•Design

3)DOCUMENTS:

•User Manual

•Design Methods

Software Types

 System software—a collection of programs written to

service other programs.

 Application software—stand-alone programs that solve a

specific business need.

 Engineering/scientific software—has been characterized

by “number crunching” algorithms (numerical algorithms)

Software Types

 Embedded software—resides within a product or system

and is used to implement and control features and functions

for the end user and for the system itself.

 Product-line software—designed to provide a specific

capability for use by many different customers.

Software Types

 Web applications —called “WebApps,” this network-

centric software category spans a wide array of applications.

 Artificial intelligence software —makes use of non

numerical algorithms to solve complex problems.

Software Engineering

Definition

Software Engineering is the establishment and use of the

engineering principles in order to obtain economical

software that is reliable and work efficiently on real

machines

Software Engineering Activities

• Requirements gathering and Analysis

• Planning

• Design

• Development

• Testing

• Maintaining

Requirements gathering and Analysis

• Simple listing

• Surveys

• Interviews

• Focus

• Observation

• Use case Analysis

Types:

1)Functional Requirements –Something that the system must do;

Eg:Business rules of functions like add a customer ,print invoice etc

2)Non Functional Requirements –quality characteristics or attributes of the system

Eg: providing user access more than customers expectation

Software Engineering Layers

Software Engineering Practice

The Essence of Software Engineering Practice :

 Understand the problem (communication and analysis).

 Plan a solution (modeling and software design).

 Carry out the plan (code generation).

 Examine the result for accuracy (testing and quality assurance).

Software Process

• A software process is represented as a set of work phase that is applied

to design and build a software product

• There is no ideal software process and many organization have

developed their own approach to software development

• A process is a collection of activities, actions, and tasks that are

performed when some work product is to be created.

• The intent is always to deliver software in a timely manner and with

sufficient quality to satisfy the customers

Fundamental Activities of Software Process

There are some fundamental activities that are common to all software

process :

• Software Specification

• Software design and implementation

• Software validation

• Software evolution

Software Process Framework

• A process framework establishes the foundation for a complete software

engineering process by identifying a small number of framework

activities that are applicable to all software projects, regardless of their

size or complexity.

Software Process Model

• It’s a development strategy designed to solve an actual problem in an

industry settings

– Generic process model

– Prescriptive process model

– Specialized process models

– The unified process

– Personal and team process models

Generic Process Framework

A generic process framework for software engineering encompasses five
activities:

Communication

Planning - software project plan—defines the software engineering work by
describing the technical tasks to be conducted, the risks that are likely, the
resources that will be required, the work products to be produced, and a work
schedule.

Modeling - creating models to better understand software requirements

Construction - combines code generation and the testing

Deployment

Process Flow

There are four types of process flow they are:

1. Linear process flow - executes each of the five framework activities in

sequence

2. Iterative process flow - repeats one or more of the activities before

proceeding to the next

3. Evolutionary process flow - executes the activities in a “circular”

manner

4. Parallel process flow - executes one or more activities in parallel with

other activities

Process Flow

Process Flow

Process Flow

Prescriptive Process Models

There are three types of prescriptive process models. They are:

1. The Waterfall Model

2. Incremental Process model

3. RAD model

The Waterfall Model

The Waterfall Model

The sequential phases in Waterfall model are −

• Requirement Gathering and analysis

• System Design − helps in specifying hardware and system requirements and helps in
defining the overall system architecture.

• Implementation − the system is first developed in small programs called units, which
are integrated in the next phase.

• Integration and Testing − All the units developed in the implementation phase are
integrated into a system after testing of each unit. Post integration the entire system is
tested for any faults and failures.

• Deployment

• Maintenance − There are some issues which come up in the client environment to fix
those issues, patches are released. Also to enhance the product some better versions are
released.

The Waterfall Model

• The waterfall model is also called as 'Linear sequential model' or

'Classic life cycle model'.

• In this model, each phase is fully completed before the beginning of the

next phase.

• This model is used for the small projects.

• In this model, feedback is taken after each phase to ensure that the

project is on the right path.

• Testing part starts only after the development is complete.

Advantages :

1. The waterfall model is simple and easy to understand, implement, and use.

2. All the requirements are known at the beginning of the project, hence it is

easy to manage.

3. They should perform quality assurance test before completing each stage

4. Elaborate documentation is done at every phase of the software

development cycle

5. Project is completely dependent on project team with minimum client

intervention

The Waterfall Model

Disadvantages :

1. Error can be fixed only after the testing period

2. It is not suitable for a complex project

3. Documentation occupies a lot of time

4. Client valuable feedback cannot be included with ongoing development

phase

The Waterfall Model

V-Model

Incremental Process model

• The incremental model combines the elements of waterfall model

and they are applied in an iterative fashion.

• The first increment in this model is generally a core product

• Each increment builds the product and submits it to the customer for any

suggested modifications.

• The next increment implements on the customer's suggestions and add

additional requirements in the previous increment.

• This process is repeated until the product is finished.

Incremental Process model

Advantages :

• This model is flexible because the cost of development is low and

initial product delivery is faster

• It is easier to test and debug during the smaller iteration.

• The working software generates quickly and early during the software

life cycle.

• The customers can respond to its functionalities after every increment.

Incremental Process model

Disadvantages :

• Need clear planning and design

• The planning of design is required before the whole system is

broken into small increments.

• Total cost is higher than water fall model

Incremental Process model

• Evolutionary models are iterative. They are characterized in a manner

that enables you to develop increasingly more complete versions of the

software.

• Evolutionary process models :

1. Prototyping

2. The Spiral Model

Evolutionary Process Models

Prototyping

The Spiral Model

• Proposed by Barry Boehm [Boe88].

• It is an evolutionary software process model that couples the iterative

nature of prototyping with the controlled and systematic aspects of the

waterfall model.

• risk-driven process model

• cyclic approach

• anchor point milestones

The Spiral Model

RAD model

Rapid Application Development

• Using the RAD model, software product is developed in a short period of

time.

• The initial activity starts with the communication between customer and

developer.

• Planning depends upon the initial requirements and then the requirements

are divided into groups model

• It is a high speed adaptation of the linear sequential model in which rapid

development is achieved by using component based construction

Core Elements of RAD

Software Process Model

• It’s a development strategy designed to solve an actual problem in an

industry settings

– Generic process framework

– Specialized process models

– The unified process

– Personal and team process models

SPECIALIZED PROCESS MODELS

• This model take on many of the characteristics of one or more of the

traditional models

• These models tend to be applied when a specialized or narrowly

defined software engineering approach is chosen.
– Component Based Development (Promotes reusable components)

– The Formal Methods Model (Mathematical formal methods are backbone

here)

– Aspect Oriented Software Development (AOSD)(use crosscutting

technology)

Component Based Development

• Component Based Software Engineering (CBSE) is a process that

focuses on the design and development of computer-based

systems with the use of reusable software components

• Develop software using already available components

• In this kind of development there is no concept of building any

software from scratch

Definition and characteristics of components

• Software component is a software package ,a web service, a web

resource that encapsulates a set of related functions/data

• Developed components must be portable

• Replaceable/ Reusable

CBSE Framework Activities

1. Component Qualification:

• Ensures that the system architecture define the requirements of the

components for becoming a reusable component.

• It means “the services that are given, and the means by which

customers or consumers access these services ” are defined as a part of

the component interface.

2. Component Adaptation:

• This activity ensures that the architecture defines the design conditions

for all component and identifying their modes of connection.

3. Component Composition:

• This activity ensures that the Architectural style of the system

integrates the software components and form a working system.

4. Component Update:

• This activity ensures the updation of reusable components.

CBSE Framework Activities

Characteristics of CBSE

• Reusability

• Replaceable

• Not context specific

• Extensible

The Formal Methods Model (Proof, Calculation ,

precision, Understanding)

• What is a FORMAL METHOD MODEL?

– The Formal Methods Model is an approach to Software Engineering

that applies mathematical methods or techniques to the process of

developing complex software systems. The approach uses a formal

specification language to define each characteristic of the system. .

Formal methods can be useful in :

1. Articulating, and representing requirements .

2. Specifying software : developing a precise statement of what the software is

to do .

3. Software design : Data refinement involves state machine specification,

abstraction functions, and simulation proofs .

4. Coding verification

5. Enhancing early error detection .

6. Developing safe, reliable, secure software - intensive systems .

7. The overall effect of the use of formal techniques on time, cost ,and quality.

Formal Specification Methods

• Formal Specifications

• Formal Proofs

• Model Checking

• Abstraction

Aspect Oriented Software Development

UI Layer

Business Logic Layer

Data Access

Layer

•Security

•Profile

•Logging

•Transaction

Management

Advantages :
• Cross cutting Concern

• Reuse

• Quick Development

• Enabled /Disabled

Aspect Oriented Software Development

Software Process Model

• It’s a development strategy designed to solve an actual problem in an industry

settings

– Generic process framework

– Specialized process models

– The unified process

– Personal and team process models

Unified Process Model

Unified Process Model

• It implements many of the best principles of agile software

development.

Phases of the Unified Process:

This process divides the development process into five phases:

1. Inception

2. Elaboration

3. Conception

4. Transition

5. Production

The aim of PSP is to give software engineers with the regulated methods

for the betterment of personal software development processes.

The PSP helps software engineers to:

• Improve their approximating and planning skills.

• Make promises that can be fulfilled.

• Manage the standards of their projects.

• Reduce the number of faults and imperfections in their work.

PERSONAL SOFTWARE PROCESS (PSP)

PSP Framework Activities :

• Planning

• High Level Design

• High Level Design Review

• Development

• Postpartum

PERSONAL SOFTWARE PROCESS (PSP)

The Team Software Process (TSP), along with the Personal Software

Process, helps the high- performance engineer to

• ensure quality software products

• create secure software products

• improve process management in an organization

TEAM SOFTWARE PROCESS

(TSP)

TSP Framework Activities :

• Launch High Level Design

• Implementation

• Integration

• Test

• Postpartum

TEAM SOFTWARE PROCESS (TSP)

