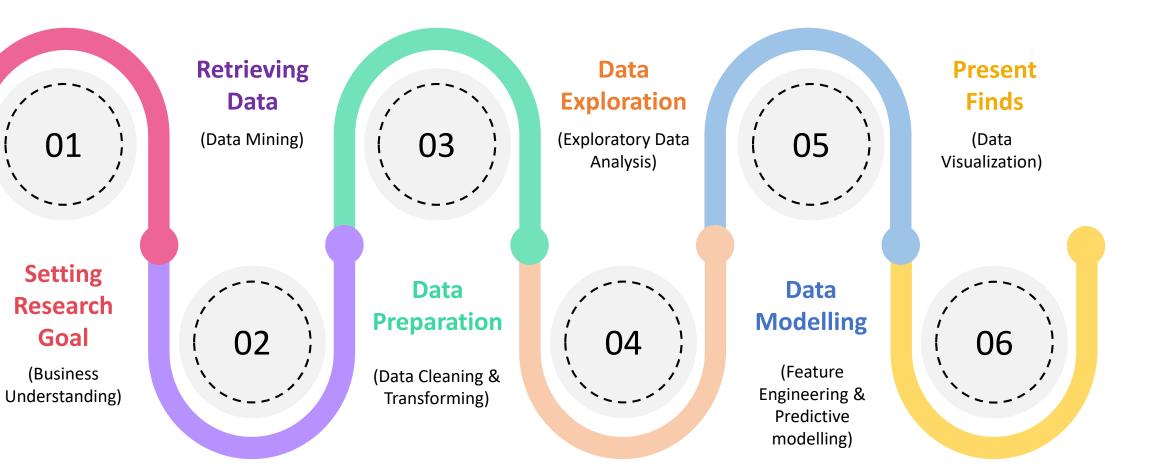


SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF COMPUTER APPLICATIONS


19CAE716 – DATA SCIENCE

UNIT – II: DATA SCIENCE PROCESS

TOPIC: OVERVIEW – SETTING RESEARCH GOALS



Setting Research Goals

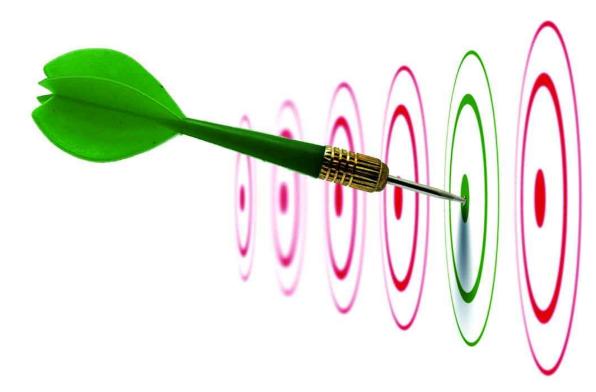
- ✓ Every data science project should begin with a clear understanding of the problem at hand.
- ✓ Whether it's optimizing a business process, predicting customer behavior, or identifying patterns in a dataset, articulating the problem statement is essential.
- ✓ The problem statement sets the stage for the entire research endeavour, providing a focused direction for subsequent steps.

Define the Problem Statement

 \checkmark Once the problem is defined, establish the specific

objectives you aim to achieve.

✓ These objectives should be measurable and tied to key performance indicators (KPIs).


 \checkmark For instance, if the goal is to enhance customer

engagement, metrics like click-through rates, conversion

rates, or customer satisfaction scores can be employed to

Identify Objectives and Key Metrics

quantify success.

Research Goals / DS / Priyanga S / AP / MCA / SNSCT

 \checkmark Collaboration with stakeholders is integral to the success of

any data science project.

 \checkmark Engage with domain experts, business leaders, and end-

users to comprehend their needs and expectations.

 \checkmark This collaborative approach ensures that the research goals

align with organizational objectives and address real-world

challenges.

Understand Stackholder Requirements

Conduct a Literature Review

 \checkmark Before diving into data analysis, it is beneficial to review

existing literature in the field.

✓ A thorough literature review helps in understanding previous research findings, methodologies, and potential

gaps in knowledge.

 \checkmark This step aids in refining research questions, avoiding

redundancy, and incorporating best practices.

Formulate Hypotheses

 \checkmark Based on the problem statement, objectives, and literature

review, formulate hypotheses that can be tested using data.

 \checkmark Hypotheses guide the data collection and analysis process,

providing a structured approach to uncovering patterns,

relationships, or trends in the data.

 \checkmark Selecting and preparing the right data are critical

components of any data science project.

 \checkmark Define the data sources, collect relevant datasets, and clean

the data to ensure its quality.

 \checkmark The quality of insights derived is directly proportional to the

quality of the data analyzed.

✓ Selecting the right analytical methods and models is crucial

for achieving accurate and meaningful results.

 \checkmark Depending on the nature of the problem, choose

appropriate statistical techniques, machine learning

algorithms, or other analytical methods.

 \checkmark Consider factors such as interpretability, scalability, and

computational efficiency when making these choices.

Choose Appropriate Methods & Models

Establish criteria to evaluate the performance of models and

methods.

 \checkmark This step is essential for measuring the success of the

research and determining whether the objectives have been

met.

✓ Common evaluation metrics include accuracy, precision,

recall, and F1 score for classification problems, or Mean

Squared Error for regression tasks.

- $\checkmark~$ Data science is often an iterative process.
- \checkmark Conduct initial analyses, evaluate results, and refine the

approach based on insights gained.

✓ Iterative refinement allows for the improvement of models

and methods, ensuring that the research goals are achieved

effectively.

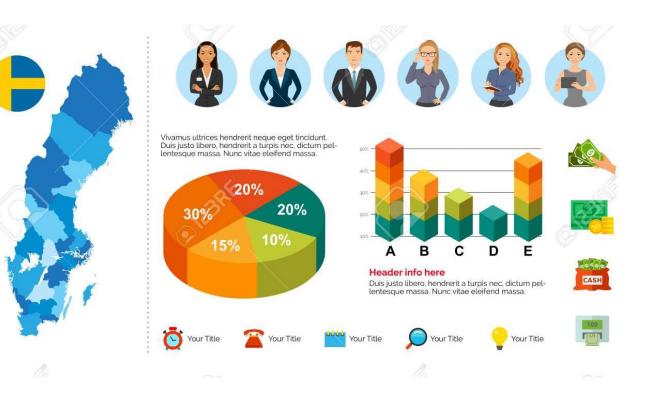
Iterative Analysis & Refinement

 \checkmark The final step in any data science research is to

communicate findings effectively.

✓ Whether through reports, visualizations, or

presentations, convey the results in a manner that is


accessible to both technical and non-technical audiences.

 \checkmark Clearly articulate the implications of the research and

any recommendations for future actions.

Communicate Results Effectively

