

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE-35.

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai.

DEPARTMENT OF AUTOMOBILE ENGINEERING

COURSE NAME: 19AUB301 – AUTOMOTIVE FUELS AND LUBRICANTS

III YEAR / V SEMESTER

Unit 3 - Lubricants

Topic: Degradation of Lubricants and Additives and its Mechanism

DEGRADATION OF LUBRICANTS

- > A lubricant in service is subjected to a wide range of conditions which can degrade its base oil and additive system.
- Such factors include heat, entrained air, incompatible gases, moisture, internal or external contamination, process constituents, radiation and inadvertent mixing of a different fluid.

2/14

OXIDATION

- > Oxidation is the reaction of materials with oxygen.
- ➤ It can be responsible for viscosity increase, varnish formation, sludge and sediment formation, additive depletion, base oil breakdown, filter plugging, loss in foam properties, acid number increase, rust and corrosion.
- ➤ Controlling oxidation is a significant challenge in trying to extend the lubricant's life.

THERMAL BREAKDOWN

- ➤ In a mechanical working environment, the temperature of the lubricant is a primary concern.
- ➤ In addition to separating the moving parts of the machinery, the lubricant must also dissipate heat.
- ➤ This means the lubricant will sometimes be heated above its recommended stable temperature.
- ➤ Overheating can cause the light ends of the lubricant to vaporize or the lubricant itself to decompose.

THERMAL BREAKDOWN

- This can cause certain additives to be removed from the system without performing their job, or the viscosity of the lubricant may increase.
- ➤ At temperatures greatly exceeding the thermal stability point of the lubricant, larger molecules will break apart into smaller molecules.
- ➤ This thermal cracking, often referred to as thermal breakdown, can initiate side reactions, induce polymerization, produce gaseous by-products, destroy additives and generate insoluble by-products.
- ➤ In some cases, thermal degradation will cause a decrease in viscosity.

MICRO DIESELING

- ➤ It is known as pressure-induced thermal degradation
- ➤ It is a process in which an air bubble transitions from a low-pressure to a high-pressure zone, resulting in adiabatic compression.
- ➤ This may produce localized temperatures in excess of 1,000°C, resulting in the formation of carbonaceous by-products and accelerated oil degradation.

ELECTROSTATIC SPARK DISCHARGE

- ➤ When clean, dry oil rapidly flows through tight clearances, internal (molecular level) friction within the oil can generate static electricity
- > It may accumulate to the point where it produces a sudden discharge or spark.
- ➤ These sparks are estimated to be between 10,000°C and 20,000°C and typically occur in mechanical filters.

7/ 14

CONTAMINATION

- > Foreign substances can greatly influence the type and rate of lubricant degradation.
- > Metals such as copper and iron are catalysts to the degradation process.
- > Water and air can provide a large source of oxygen to react with the oil.
- ➤ Therefore, a contaminant-free lubricant is ideal and monitoring a fluid's contamination levels provides significant insight to the machine's health.

ADDITIVES

- ➤ Additives are a chemical component or blend used at a specific treat rate, generally from < 1 to 35 percent, to provide one or more functions in the fluid.
- > Ideally, additive components are multifunctional.
- > They are soluble in mineral oil, water or sometimes both.
- > Second, additives offer or help with a wide variety of functions, such as:
 - boundary lubricity
 - extreme pressure (EP)
 - inhibiting corrosion
 - emulsification
 - antimisting
 - antimicrobial pesticide
 - antifoam additives and defoamers

ROLES OF ADDITIVES

Enhance Existing Base Oil Properties

Antioxidants
Corrosion Inhibitors
Anti-foam Agents
Demulsifying Agents

Suppress Undesirable Base Oil Properties

Pour Point Depressants VI Improvers Impart New Properties to Base Oils

EP Additives
Detergents
Metal Deactivators
Tackiness Agents

10/26/2023 10/ 14

ADDITIVES

10/26/2023 11/ 14

ADDITIVES

MACHINE	COMMON ADDITIVES USED	PERCENT OF OIL VOLUME
Engines	Antioxidant, corrosion inhibitor, detergent/dispersant, anti-wear, anti-foam, alkalinity improver	10 - 30%
Steam turbines, compressors	Antioxidant, corrosion inhibitor, demulsifier, anti-foam	0.5 - 5%
Gears (spiral, bevel or hypoid)	Anti-wear, antioxidant, anti-foam, sometimes corrosion inhibitor, extreme pressure	1 - 10%
Gears (worm)	Extreme pressure, antioxidant, corrosion inhibitor, fatty acids	3 - 10%
Hydraulic systems	Antioxidant, anti-wear, anti-foam, corrosion inhibitor, pour-point depressant, viscosity index improver	2 - 10%

10/26/2023 12/ 14

REFERENCE

- https://www.finol.ie/news/the-main-causes-of-oil-degradation/
- ➤ https://www.machinerylubrication.com/Read/31107/oil-lubricant-additives

THANK YOU!!!

14/ 14