

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AEROSPACE ENGINEERING

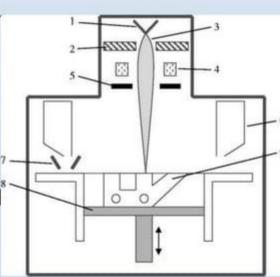
19ASZ401 – 3D PRINTING FOR SPACE COMPONENTS IV YEAR VII SEM

UNIT-III Photo polymerization and Powder Bed Fusion Process TOPIC: Electron Beam Melting

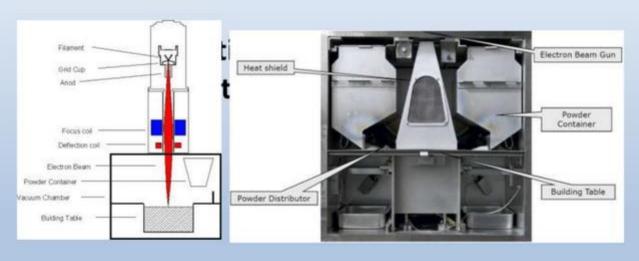
NAME: Mr.N.Venkatesh., M.Tech Assistant Professor Aerospace Engineering SNS College of Technology

Electron Beam Melting (EBM)

- Electron Beam Melting (EBM) is a type of rapid prototyping for metal parts. The technology manufactures parts by melting metal powder layer per layer with an electron beam in a high vacuum. Unlike some metal sintering techniques, the parts are fully solid, void—free, and extremely strong.
- EBM is also referred to as Electron Beam Machining.
- High speed electrons .5-8 times the speed of light are bombarded on the surface of the work material generating enough heat to melt the surface of the part and cause the material to locally vaporize.
- EBM does require a vacuum, meaning that the workpiece is limited in size to the vacuum used.
 The surface finish on the part is much better than that of other manufacturing processes.
- EBM can be used on metals, non-metals, ceramics, and composites.



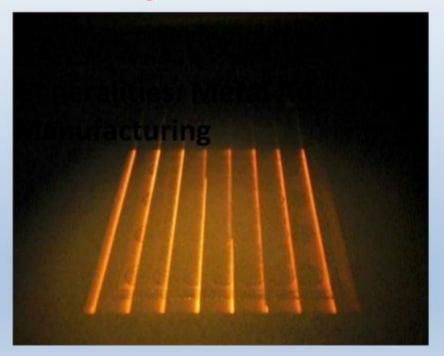
Electron Beam Melting (EBM)


- Dispensed metal powder in layers
- Cross-section molten in a high vacuum with a focused electron beam
- Process repeated until part is completed
- Stainless steel, Titanium, Tungsten parts
- Ideal for medical implants and injection molds
- · Still very expensive process

Electron Beam Melting

Examples of EBM

direct metal deposition


Components made of Ti and Co-Cr alloys

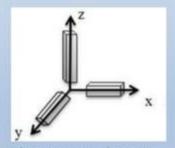
Biomedical components made of Ti alloys

Electron Beam Melting

EMB benefit

- High productivity
- Suitable for very massive parts
- No residual internal stress (constant 680–720°C build temperature)
- Less supports are needed for manufacturing of parts
- Possibility to stack parts on top of each other (mass production)
- Sintered powder = good for thermal conductivity = less supports
- Process under vacuum (no gaz contaminations)
- Very fine microstructures (Ti6Al4V), very good mechanical and fatigue results (Ti6Al4V)

EBM drawbacks


- Powder is sintered ->tricky to remove (e.g. interior channels)
- Long dead time between 2 productions (8 hours for cooling – A2, A2X, A2XX systems)
- Tricky to work with fine powder
- Expensive maintenance contract

Experimental procedures

- Electron Beam Melting (EBM)
 - · Random scanning strategy
 - Vacuum
 - •Pre-heating of the subtrate: 680-720°C

Reference axis for EBM and LBM

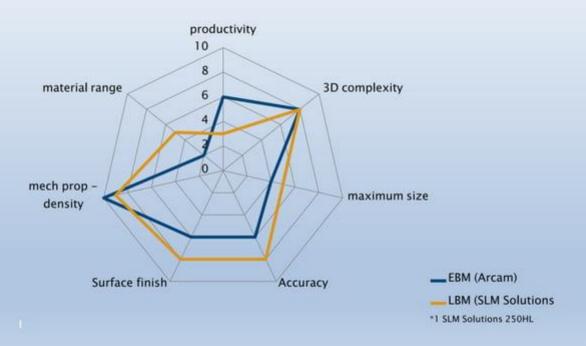
 Electron Beam Melting (EBM)

- Metallic powder deposited in a powder bed
- · Electron Beam
- Vacuum
- · Build temperature: 680-720°C

 Laser Beam Melting (LBM)

- Metallic powder deposited in a powder bed
- · Laser Beam
- · Argon flow along Ox direction
- Build temperature: 200°C

	LBM	EBM	
Size (mm)	250 x 250 x 350*1	210 x 210 x 350*2	
Layer thickness (µm)	30 - 60	50	
Min wall thickness (mm)	0.2	0.6	
Accuracy (mm)	+/- 0.1	+/- 0.3	
Build rate (cm ³ /h)	5 - 20	80	
Surface roughness (µm)	5 - 15	20 - 30	
Geometry limitations	Supports needed everywhere (thermal, anchorage)	Less supports but powde is sintered	
Materials	Stainless steel, tool steel, titanium, aluminum,	Only conductive materials (Ti6Al4V, CrCo,)	
		*1 SLM Solutions 250HL	



		[EOS	SLM	Concept Laser	Renishaw	ARCAM
			M270	250HL	M1	AM250	A1
Ga	s di processo		Argon o Azoto	Argon o Azoto	Argon o Azoto	Argon o Azoto	
consumo di gas Lt/h		Lt/h		90	1000	5-30	
Po	tenza del laser	W	200 - 400	200 - 400	200 - 400	200 - 400	50-3000
Ma	x dimensione	mm	250 × 253 × 215	248 × 248 × 250	250 ×250 ×250	245 × 245 × 300	200 x 200 x 180
Ca	pacità produttiva	cmc/h	2 - 20	20	2 - 20	5 - 20	55-80
Ve	locità scansione lase	m/s		20	7	2	8000
Sp	essore layers	micron	20-60	20 - 75	20-80	20 - 100	
Fo	rmato file		STL	STL	STL	STL	STL
Pro	ecisione	mm	+/- 0,05		+/- 0,05		+/- 0,20
Ru	igosità	micron	4-6	4-6	4-6	4-6	25-35
ali Materiali	Acciaio inox		17-4 PH1	1.4404 (316L) 1.4542 (17-4 PH)	1 4404	1.4404	
	Acciaio per stampi		Maraging	1.2344 (H13)	1.2709	1.2344	
	Superlega CoCr		CoCr ASTMF75	CoCr ASTMF 75	CoCr (F75), CrCo (dentale)	CoCr ASTMF75	CoCrMo ASTM F7
Princip	Titanio		Ti6A4V	Ti8Al4V, Ti8Al7Nb, Titanio puro	Titanium Grade 5	Ti-BAI-4V e Ti-BAI- 7Nb	TiBAI4V
	Leghe di Nickel		Inconel 625, 718	Inconel 625, 718	Inconel 625	inconel 718 e 625	
	Alluminio		AlSi10Mg	AlSi12	AJSi10Mg, AJSi12	AlSi12	

