

17/10/2023 19CSB302/COMPUTER NETWORKS A.CATHERINE/AP/AIML

LINK STATE ROUTING
Link state routing is the second family of routing protocols. While distance-
vector routers use a distributed algorithm to compute their routing tables, link-
state routing uses link-state routers to exchange messages that allow each
router to learn the entire network topology. Based on this learned topology,
each router is then able to compute its routing table by using the shortest path
computation.
Features of Link State Routing Protocols

• Link State Packet: A small packet that contains routing
information.

• Link-State Database: A collection of information gathered from the
link-state packet.

• Shortest Path First Algorithm (Dijkstra algorithm): A calculation
performed on the database results in the shortest path

• Routing Table: A list of known paths and interfaces.

Dijkstra’s shortest path algorithm

This algorithm is used to calculate and find the shortest path between nodes
using the weights given in a graph. (In a network, the weights are given by link-
state packets and contain information such as the health of the routers, traffic
costs, etc.).

A node is then marked as visited and added to the path if the distance between it
and the source node is the shortest. This continues until all the nodes have been
added to the path, and finally, we get the shortest path from the source node to
all other nodes, which packets in a network can follow to their destination.

An example illustrating the working of the algorithm

The source node here is node 0. We assume the weights show the distances.

17/10/2023 19CSB302/COMPUTER NETWORKS A.CATHERINE/AP/AIML

Initially, we have this list of distances. We mark the initial distances as INF
(infinity) because we have not yet determined the actual distance except for
node 0. After all, the distance from the node 0 to itself is 0.

NODE DISTANCE
0 0

1 INF

2 INF

3 INF

4 INF

5 INF

6 INF

We also have a list to keep track of only the visited nodes, and since we have
started with node 0, we add it to the list (we denote a visited node by adding an
asterisk beside it in the table and a red border around it on the graph).

17/10/2023 19CSB302/COMPUTER NETWORKS A.CATHERINE/AP/AIML

{0}

We check the distances 0 -> 1 and 0 -> 2, which are 2 and 6, respectively. We
first update the distances from nodes 1 and 2 in the table.

NODE DISTANCE
0 0

1 2

2 6

3 INF

4 INF

17/10/2023 19CSB302/COMPUTER NETWORKS A.CATHERINE/AP/AIML

NODE DISTANCE
5 INF

6 INF

We then choose the shortest one, which is 0 -> 1 and mark node 1 as visited and
add it to the visited path list.

NODE DISTANCE
0 0

1 2*

2 6

3 INF

4 INF

5 INF

6 INF

{0,1}

Next, we check the nodes adjacent to the nodes added to the path(Nodes 2 and
3). We then update our distance table with the distance from the source node to
the new adjacent node, node 3 (2 + 5 = 7).

17/10/2023 19CSB302/COMPUTER NETWORKS A.CATHERINE/AP/AIML

To choose what to add to the path, we select the node with the shortest currently
known distance to the source node, which is 0 -> 2 with distance 6.

NODE DISTANCE
0 0

1 2*

2 6*

3 7

4 INF

5 INF

6 INF

{0,1,2}

Next we have the distances 0 -> 1 -> 3(2 + 5 = 7) and 0 -> 2 -> 3(6 + 8 = 14) in
which 7 is clearly the shorter distance, so we add node 3 to the path and mark it
as visited.

17/10/2023 19CSB302/COMPUTER NETWORKS A.CATHERINE/AP/AIML

NODE DISTANCE
0 0

1 2*

2 6*

3 7*

4 INF

5 INF

6 INF

{0,1,2,3}

We then check the next adjacent nodes (node 4 and 5) in which we have 0 -> 1 -
> 3 -> 4 (7 + 10 = 17) for node 4 and 0 -> 1 -> 3 -> 5 (7 + 15 = 22) for node 5.
We add node 4.

17/10/2023 19CSB302/COMPUTER NETWORKS A.CATHERINE/AP/AIML

NODE DISTANCE
0 0

1 2*

2 6*

3 7*

4 17*

5 22

6 INF

{0,1,2,3,4}

In the same way, we check the adjacent nodes(nodes 5 and 6).

Node 5:

• Option 1: 0 -> 1 -> 3 -> 5(7 + 15 = 22)
• Option 2: 0 -> 1 -> 3 -> 4 -> 5(17 + 6 = 23)
• Option 3: 0 -> 1 -> 3 -> 4 -> 6 -> 5(17 + 2 + 6 = 25) We choose 22.

Node 6 0 -> 1 -> 3 -> 4 -> 6(17 + 2 = 19)

17/10/2023 19CSB302/COMPUTER NETWORKS A.CATHERINE/AP/AIML

NODE DISTANCE
0 0

1 2*

2 6*

3 7*

4 17*

5 22*

6 19*

{0,1,2,3,4,5,6}

