

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Re-accredited by NAAC with A+ grade, Accredited by NBA(CSE, IT, ECE, EEE & Mechanical) Approvedy by AICTE, New Delhi, Recognized by UGC, Affiliated to Anna University, Chennai

Department of MCA

Topic: SAMPLING DISTRIBUTION

Elective

II Semester / **I MCA**

Introduction to Sampling

What is sample?

• A sample is "a smaller (but hopefully representative) collection of units from a population used to determine truths about that population"

Why sample?

- Resources (time, money) and workload
- Gives results with known accuracy that can be calculated mathematically
- The sampling frame is the list from which the potential respondents are drawn
- Registrar's office
- Class rosters
- Must assess sampling frame errors

2/12

Major Types of Samples Probability (Random) Samples

- Simple random sample
 - Systematic random sample
 - Stratified random sample
 - Multistage sample
 - Multiphase sample
 - Cluster sample
- Non-Probability Samples
 - Convenience sample
 - Purposive sample
 - Quota

Slide 3 of 32

Specific Types of Samples

- 1. Stratified Samples
- 2. Cluster Samples
- 3. Systematic Samples
- 4. Convenience Samples

Slide 4 of 32

1. Stratified Samples

A stratified sample has:

i. members from each segment of a population. ii. This ensures that each segment from the population is represented.

Slide 5 of 32

2. Cluster Samples

A cluster sample has

- all members from randomly selected segments of a population.
- This is used when the population falls into naturally occurring subgroups.

The city of Clarksville divided into city blocks.

Slide 6 of 32

3. Systematic Samples

A systematic sample is

- a sample in which each member of the population is assigned a number.
- A starting number is
- randomly selected and sample members are selected at regular intervals.

Every fourth member is chosen.

Slide 7 of 32

A convenience sample consists only of available members of the population.

Example:

•You are doing a study to determine the number of years of education each teacher at your college has. •Identify the sampling technique used if you select the samples listed.

Sampling Distribution

What is Sampling Distribution?

- The way our means would be distributed
- if we (1) *collected a sample,*
- recorded the mean and
- threw it back, and
- -(2) collected another,
- recorded the mean and
- threw it back, and
- did this again and again....

Slide 9 of 32

Sampling Distribution

• From Vogt:

A theoretical frequency distribution of the scores for or values of a statistic, such as a mean.

- Any statistic that can be computed for a sample has a sampling distribution.
- A sampling distribution is:
- the distribution of statistics
- that would be produced
- in repeated random sampling (with replacement) from the same population.

Slide 10 of 32

- Sampling distributions is
- all possible values of a statistic and
- their probabilities of occurring for a sample of a particular size.
- Sampling distributions are used to
- calculate the probability that sample statistics
- could have occurred by chance and
- thus to decide whether something that is true of a sample statistic is
- also likely to be true of a population parameter.

Slide 11 of 32

- We are moving from descriptive statistics to inferential statistics.
- Inferential statistics allow the researcher:
- to come to conclusions about a population
- on the basis of descriptive statistics about a sample.

Examples of Sampling Distribution

- 1) Your sample says that
- a candidate gets support from 47%.
- 2) Inferential statistics allow you to say that
- (a) the candidate gets support from 47% of the population
- (b) with a margin of error of +/- 4%.
- This means that the support in the population is likely somewhere between 43% and 51%.

Slide 12 of 32

Error on Sampling Distribution

- Margin of error is taken directly from a sampling distribution.
- It looks like this:

7 October 2023

95% of Possible Sample Means

Your Sample Mean

Slide 13 of 32

Let's create a sampling distribution of means... a) Take a sample of size 1,500 from the US. b) Record the mean income. c) Our census said the mean is \$30K. Let's create a sampling distribution of means...

Take another sample of size 1,500 from the US. Record the mean income. Our census said the mean is \$30K.

Take another sample of size 1,500 from the US. Record the mean income. Our census said the mean is \$30K.

Take another sample of size 1,500 from the US. Record the mean income. Our census said the mean is \$30K.

Slide 14 of 32

Say that the standard deviation of this distribution is \$10K. Think back to the empirical rule. What are the odds you would get a sample mean that is more than \$20K off.

7 October 2023

- The sample means would stack up in a normal curve. A normal sampling

Slide 15 of 32

Knowing the likely variability of the sample means from repeated sampling gives us a context within which to judge how much we can trust the number we got from our sample.

For example, if the variability is low, , we can trust our number more than if the variability is high

• The first sampling distribution above, a, has a lower standard error. Now a definition! The standard deviation of a normal sampling distribution is called the standard error.

Slide 16 of 32

- Statisticians have found that
- the standard error of a sampling distribution is :
- quite directly affected by
- the number of cases in the sample(s), and
- the variability of the population distribution. **Population Variability:**

For example, Americans' incomes are quite widely distributed, from \$0 to Bill Gates'. Americans' car values are less widely distributed, from about \$50 to about \$50K. The standard error of the latter's sampling distribution will be a lot less variable.

Slide 17 of 32

Population Variability:

For example, Americans' incomes are guite widely distributed, from \$0 to Bill Gates'.

The standard error of the latter's sampling distribution will be a lot less variable.

7 October 2023

Introduction to Big Data/ 19CAT702-Big Data Analytics/ MCA/ SNSCT

Slide 18 of 32

A Real Time Scenario on Sampling Distribution

The standard error of income's sampling distribution will be a lot higher than car price's.

7 October 2023

Introduction to Big Data/ 19CAT702-Big Data Analytics/ MCA/ SNSCT

Slide 19 of 32

Standard error :

The sample size affects the sampling distribution too: Standard error = population standard deviation / square root of sample size σ Y-bar= $\sigma / \sigma n$

Example for Standard error

Standard error = population standard deviation / square root of sample size σ Y-bar= σ / σ n

IF the population income were distributed with mean, $\mu =$ \$30K with standard deviation, $\sigma = $10K$

Slide 20 of 32

What decides the Sampling Distribution?

Standard error = population standard deviation / square root of sample size

$$\sigma_{\text{Y-bar}} = \sigma / \sqrt{n}$$

IF the population income were distributed with mean, $\mu =$ \$30K with standard deviation, $\sigma =$ \$10K

... the sampling distribution changes for varying sample sizes

Introduction to Big Data/ 19CAT702-Big Data Analytics/ MCA/ SNSCT

7 October 2023

Population Distribution

Slide 21 of 32

Example 1:

- Think about what kind of variability you would get
- if you collected income through repeated samples of size 1 each.
- Contrast that with the variability you would get:
- if you collected income through repeated samples of size N 1 (or 300 million minus one) each.

Example 2:

- Think about drawing the population distribution and playing "darts" where the mean is the bull's-eye. Record each one of your attempts.
- Contrast that with playing "darts" but doing it in rounds of 30 and recording the average of each round.
- What kind of variability will you see in the first versus the second way of recording your scores.

...Now, do you trust larger samples to be more accurate?

An Example:

A population's car values are $\mu = 12 K with $\sigma = 4 K. Which sampling distribution is for sample size 625 and which is for 2500? What are their s.e.'s?

s.e. =
$$4K/25 = 160$$
 s.e. = $4K/50 = 80$
($\sqrt{625} = 25$) ($\sqrt{2500} = 50$)

A population's car values are $\mu = $12K$ with $\sigma = $4K$. Which sampling distribution is for sample size 625 and which is for 2500? What are their s.e.'s?

7 October 2023

Introduction to Big Data/ 19CAT702-Big Data Analytics/ MCA/ SNSCT

Slide 23 of 32

A population's car values are $\mu = 12 K with $\sigma = 4 K. Which sampling distribution is for sample size 625 and which is for 2500? Which sample will be more precise? If you get a particularly bad sample, which sample size will help you be sure that you are closer to the true mean?

Introduction to Big Data/ 19CAT702-Big Data Analytics/ MCA/ SNSCT

Slide 24 of 32

1. For a random sample of size *n* from a population having mean σ and standard deviation σ , the sampling distribution of Y-bar (glitter-bar?) has mean σ and standard error σ Y-bar = $\sigma / \sigma n$

2. The Central Limit Theorem says that for random sampling, as the sample size n grows, the sampling distribution of Y-bar approaches a normal distribution. 3. The sampling distribution will be normal *no matter what the population* distribution's shape as long as n > 30.

4. If *n* < 30, the sampling distribution is likely normal only if the underlying population's distribution is normal.

5. As n increases, the standard error (remember that this word means standard deviation of the sampling distribution) gets smaller. 6. Precision provided by any given sample increases as sample size *n increases*.

Other Rules of Sampling Distribution

So we know in advance of ever collecting a sample, that if sample size is sufficiently large:

- Repeated samples would pile up in a normal distribution
- The sample means will center on the true population mean
- The standard error will be a function of the population variability and sample size
- The larger the sample size, the more precise, or efficient, a particular sample is
- 95% of all sample means will fall between +/- 2 s.e. from the population mean

Probability Distributions

• A Note:

– Not all theoretical probability distributions are Normal. One example of many is the binomial distribution.

The binomial distribution gives

- the discrete probability distribution of obtaining exactly n successes out of N trials
- where the result of each trial is true with known probability of success and false with the inverse probability.
- The binomial distribution has
- a formula and
- changes shape with each probability of success and number of trials.
- However, in this class the normal probability distribution is the most useful!

However, in this class the normal probability distribution is the most useful!

Slide 27 of 32

- Population Distribution
- Sampling Distribution

Population Distribution

Definition

The *population distribution is the probability distribution of the population* data.

• Suppose there are only five students in an advanced statistics class and the midterm scores of these five students are:

70 78 80 80 95

• Let x denote the score of a student Table 7.1 Population Frequency and Relative Frequency Distributions

Slide 28 of 32

Table 7.1 Population Frequency and Relative Frequency Distributions

	-	
x	f	Relative Freq
70	1	1/5 = .20
78	1	1/5 = .20
80	2	2/5 = .40
95	1	1/5 = .20
	N = 5	Sum = 1.

Introduction to Big Data/ 19CAT702-Big Data Analytics/ MCA/ SNSCT

7 October 2023

uency

00

Slide 29 of 32

Table 7.1 Population Frequency and Relative Frequency Distributions

Table 7.2 Population Probability Distribution

x	P (x)
70	.20
70	20
	$\Sigma P(x) =$

Definition

The probability distribution of is called its sampling distribution. It lists the various values that can assume and the probability of each value of . In general, the probability distribution of a sample statistic is called its sampling distribution.

- 1.00

www.statisticshowto.com/prediction-error-definition/ https://web.stanford.edu/class/msande226/lecture5 prediction.pdf https://newonlinecourses.science.psu.edu/stat555/node/116/ https://online.stat.psu.edu/stat555/node/116/

Introduction to Big Data/ 19CAT702-Big Data Analytics/ MCA/ SNSCT

Slide 31 of 32

Introduction to Big Data/ 19CAT702-Big Data Analytics/ MCA/ SNSCT

