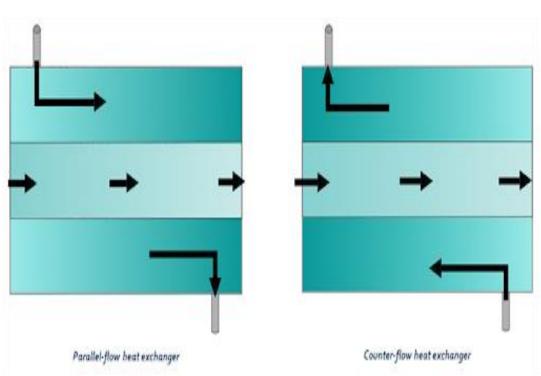


SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

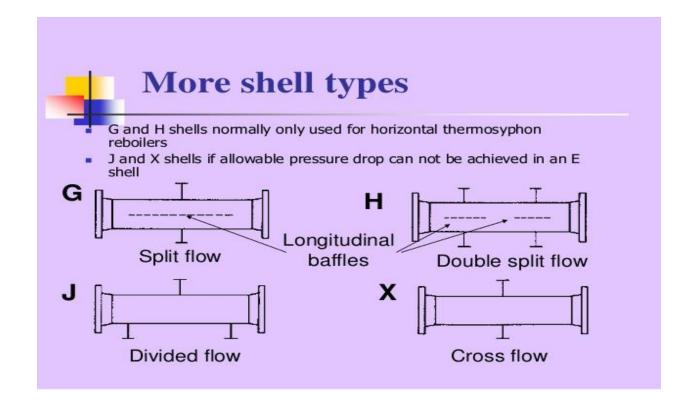

19ASE304/ Heat Transfer

Unit -2/ Types of heat exchangers, overall heat transfer coefficient

Heat exchangers

- The device at which heat exchange between two fluids at different temperatures and separated by a solid wall occurs is called heat exchanger.
- Its applications may be found in space heating, air conditioning, power production, waste heat recovery and chemical processing.

TYPES:



SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19ASE304/ Heat Transfer

Unit -2/ Types of heat exchangers, overall heat transfer coefficient

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19ASE304/ Heat Transfer

Unit -2/ Types of heat exchangers, overall heat transfer coefficient

Heat Transfer Coefficient

 \square Heat transfer rate, $q = UA\Delta T_m$

 $U = \text{overall heat transfer coefficient}, W/(m^2C)$

 $A = \text{heat transfer surface area, } m^2$

 ΔT_m = mean temperature difference, oC

Overall Heat Transfer Coefficient, U_o

$$\frac{1}{U_{o}} = \frac{1}{h_{o}} + \frac{1}{h_{od}} + \frac{d_{o}ln(\frac{d_{o}}{d_{i}})}{2k_{w}} + \frac{d_{o}}{d_{i}} \left(\frac{1}{h_{i}} + \frac{1}{h_{id}}\right)$$

 h_o = outside fluid film coefficient, $W/(m^2.^oC)$

 h_i = inside fluid film coefficient, $W/(m^2.^{\circ}C)$

 h_{od} = outside dirt coefficient (fouling factor), $W/(m^2.^{o}C)$

 h_{id} = inside dirt coefficient, $W/(m^2.^{\circ}C)$

 k_w = thermal conductivity of the tube wall material, $W/(m^2.^{\circ}C)$

 d_i = tube inside diameter, m

 d_o = tube outside diameter, m