

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE-35.

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai.

DEPARTMENT OF AUTOMOBILE ENGINEERING

COURSE NAME : 19AUT302 – VEHICLE DYNAMICS AND STRUCTURES

III YEAR / V SEMESTER

Unit 1 – Vehicle Design

Topic : Assumption to be made in designing a vehicle

- ✤ A design is a concept of either an object, a process, or a system that is specific and, in most cases, detailed.
- Design refers to something that is or has been intentionally created by a thinking agent, though it is sometimes used to refer to the nature of something

DESIGN vs DESIGN THINKING

PURPOSE

Define the primary purpose of the automobile, such as passenger transport, cargo transportation, off-road capabilities, sports performance, etc.

REGULATORY COMPLIANCE

Assume adherence to relevant safety, emission, and performance regulations in the target markets.

TARGET MARKET

Identify the intended user demographic, preferences, and needs, such as luxury car buyers, budget-conscious consumers, commercial fleets, etc.

FUEL TYPE

Decide whether the automobile will run on gasoline, diesel, electric power, hybrid technology, or alternative fuels.

PERFORMANCE

Determine the desired acceleration, top speed, and handling characteristics based on the automobile's purpose and market positioning.

SAFETY

Assume the implementation of safety features such as airbags, anti-lock braking systems (ABS), electronic stability control (ESC), etc.

ERGONOMICS

Make assumptions about driver and passenger comfort, visibility, and ease of use for various controls and features.

MATERIAL

Decide on the materials to be used in construction, considering factors like weight, strength, cost, and sustainability.

MANUFACTURING PROCESS

Assume feasible manufacturing techniques to optimize production efficiency and cost-effectiveness.

EMISSION LEVEL

Set targets for emissions to comply with environmental regulations and ensure a reduced environmental impact.

ENERGY EFFICIENCY

Make assumptions to enhance fuel economy or extend the range in the case of electric vehicles.

AESTHETICS

Establish design assumptions regarding the vehicle's appearance, taking into account brand identity and market appeal.

CONNECTIVITY AND TECHNOLOGY

Consider integrating advanced infotainment systems, connectivity features, and driver-assistance technologies.

MAINTENANCE AND SERVICE

Assume design choices that facilitate ease of maintenance and repair, which can impact the ownership experience.

MARKET COMPETITIVENESS

Make assumptions about the automobile's competitive advantages, differentiators, and pricing relative to competitors.

ROAD CONDITION

Consider typical road conditions where the automobile will operate and design it to withstand relevant environmental factors.

RELIABILITY AND DURABILITY

Assume certain design choices to ensure the automobile's reliability and durability under normal operating conditions.

THANK YOU !!!

20/09/2023