

SNS COLLEGE OF TECHNOLOGY

Coimbatore-36. An Autonomous Institution

Accredited by NBA–AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 19CSB301&Automata Theory and Compiler Design

III YEAR/ V SEMESTER

UNIT -III SYNTAXANALYSISAND SEMANTIC ANALYSIS

Topic: SLR Parser

Dr.B.Vinodhini Associate Professor Department of Computer Science and Engineering

Constructing SLR Parsing Table - Steps

To perform SLR parsing, take grammar as input and do the following:

- 1. Find LR(0) items.
- 2. Completing the closure.
- 3. Compute goto(I,X), where, I is set of items and X is grammar symbol.

LR(0) items:

An LR(0) item of a grammar G is a production of G with a dot at some position of the right side. For example, production A \rightarrow XYZ yields the four items :

 $\begin{array}{l} A \rightarrow . \ XYZ \\ A \rightarrow X \ . \ YZ \\ A \rightarrow XY \ . \ Z \\ A \rightarrow XYZ \ . \end{array}$

Constructing SLR Parsing Table - Steps

Closure operation:

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by the two rules:

- 1. Initially, every item in I is added to closure(I).
- 2. If $A \rightarrow \alpha$. B β is in closure(I) and $B \rightarrow \gamma$ is a production, then add the item $B \rightarrow . \gamma$ to I, if it is not already there. We apply this rule until no more new items can be added to closure(I).

Goto operation:

 $\mathit{Goto}(I,\,X)$ is defined to be the closure of the set of all items $[A\to\alpha X\,.\,\beta]$ such that $[A\to\alpha\,.\,X\beta]$ is in I.

Steps to construct SLR parsing table for grammar G are:

- 1. Augment G and produce G'
- 2. Construct the canonical collection of set of items C for G'
- Construct the parsing action function action and goto using the following algorithm that requires FOLLOW(A) for each non-terminal of grammar.

Constructing SLR Parsing Table - Algorithm

Input : An augmented grammar G'

Output : The SLR parsing table functions action and goto for G'

Method :

- 1. Construct $C = \{I_0, I_1, ..., I_n\}$, the collection of sets of LR(0) items for G'.
- 2. State *i* is constructed from I_i . The parsing functions for state *i* are determined as follows:
 - (a) If [A→α·aβ] is in I_i and goto(I_i,a) = I_j, then set action[i,a] to "shift j". Here a must be terminal.
 - (b) If $[A \rightarrow \alpha]$ is in I_i, then set *action*[*i*,*a*] to "reduce $A \rightarrow \alpha$ " for all *a* in FOLLOW(A).
 - (c) If [S³→S.] is in I_i, then set action[i,\$] to "accept".
- The goto transitions for state i are constructed for all non-terminals A using the rule: If goto(I_i,A) = I_j, then goto[i,A] = j.
- 4. All entries not defined by rules (2) and (3) are made "error"
- The initial state of the parser is the one constructed from the set of items containing [S[°]→.S].

Example for SLR parsing:

Construct SLR parsing for the following grammar :

 $\begin{array}{c} \mathbf{G}: \mathbf{E} \rightarrow \mathbf{E} + \mathbf{T} \mid \mathbf{T} \\ \mathbf{T} \rightarrow \mathbf{T} * \mathbf{F} \mid \mathbf{F} \\ \mathbf{F} \rightarrow (\mathbf{E}) \mid \mathrm{id} \end{array}$

The given grammar is :

Step 1 : Convert given grammar into augmented grammar. **Augmented grammar :**

- $\begin{array}{l} E^{\,\prime} \rightarrow E \\ E \ \rightarrow E + T \\ E \ \rightarrow T \\ T \ \rightarrow T \ast F \\ T \ \rightarrow F \\ F \ \rightarrow (E) \end{array}$
- $F \to i d$

Step 2 : Find LR (0) items.

: E'	\rightarrow .	E
E	\rightarrow .	E + T
E	\rightarrow .	Т
Т	\rightarrow .	T * F
Т	→.	F
F	\rightarrow .	(E)
F	→.	iđ
	E T T F	$\begin{array}{c} : E' \rightarrow \\ E \rightarrow \\ E \rightarrow \\ T \rightarrow \\ T \rightarrow \\ T \rightarrow \\ F \rightarrow \\ F \rightarrow \end{array}$

	$\frac{\text{GOTO}(I_4, \text{id})}{I_5: F \rightarrow \text{id}}.$	$\begin{array}{l} \underline{GOTO}\left(I_{7},\left(\right)\\ I_{4}:\ F\rightarrow\left(,E\right)\\ E\rightarrow,E+T\\ E\rightarrow,T\\ T\rightarrow,T*F\\ T\rightarrow,F\\ F\rightarrow,(E)\\ F\rightarrow,id\\ \end{array}$	$\frac{\text{GOTO}(I_{9}, *)}{I_{7}: T \rightarrow T * . F}$ $F \rightarrow . (E)$ $F \rightarrow . \text{ id}$ $\frac{\text{GOTO}(I_{4}, ())}{I_{4}: F \rightarrow (.E)}$ $E \rightarrow . E + T$ $E \rightarrow . T$ $T \rightarrow . T * F$ $T \rightarrow . F$
$\frac{\text{GOTO}(I_4, E)}{I_8: F \rightarrow (E.)}$ $E \rightarrow E. + T$ $\frac{\text{GOTO}(I_4, T)}{I_2: E \rightarrow T}.$	$\begin{split} & I_4: F \to (.E) \\ & \underline{GOTO(I_6, id)} \\ & I_5: F \to id \\ & \underline{GOTO(I_7, F)} \\ & I_{10}: T \to T * F \\ \end{split}$	$\frac{\text{GOTO}(I_{\underline{8}},))}{I_{11}: F \to (E)}.$ $\frac{\text{GOTO}(I_{\underline{8}},+)}{I_{\delta}: E \to E + . T}$ $T \to . T * F$ $T \to . F$ $F \to . (E)$	$\begin{array}{l} F \rightarrow . (E) \\ F \rightarrow id \end{array}$
$T \rightarrow T \cdot * F$ $\underline{GOTO(I_4, F)}$ $I_3 : T \rightarrow F \cdot$		$F \rightarrow . (E)$ $F \rightarrow . id$	

19CSB301/ATCDI/SLR Parsing/B.Vinodhini,ASP/CSE

6

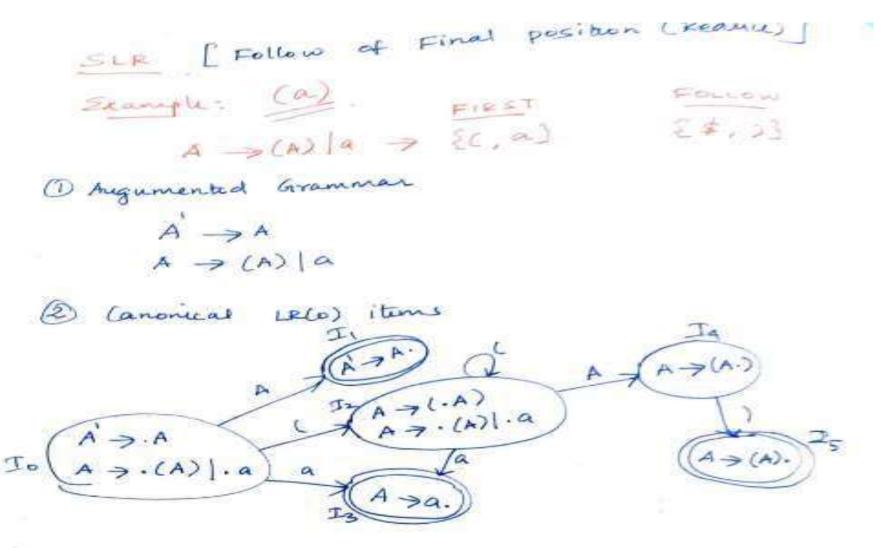
FOLLOW (E) = $\{$ $\ , \), + $ <u>SLR parsing table:</u>										
FOLLOW (T) = { $\$, +,), *$ } FOOLOW (F) = { $*, +,), \$$]		ACTION				GOTO				
		id	+	*	()	\$	E	Т	F
	I ₀	s5			s4			1	2	3
	I		s6				ACC			
	I ₂		r2	s7		r2	r2			
	I ₃		r4	r4		r4	r4			
	I ₄	s5			s4			8	2	3
	I ₅		гб	гб		16	r6			
	Ió	s5			s4				9	3
	I ₇	s5			s4					10
	I ₈		s6			s11				
	I9		r1	s7		r1	r1			
	I ₁₀		r3	r3		13	r3			
	I ₁₁		r5	15		r5	r5			

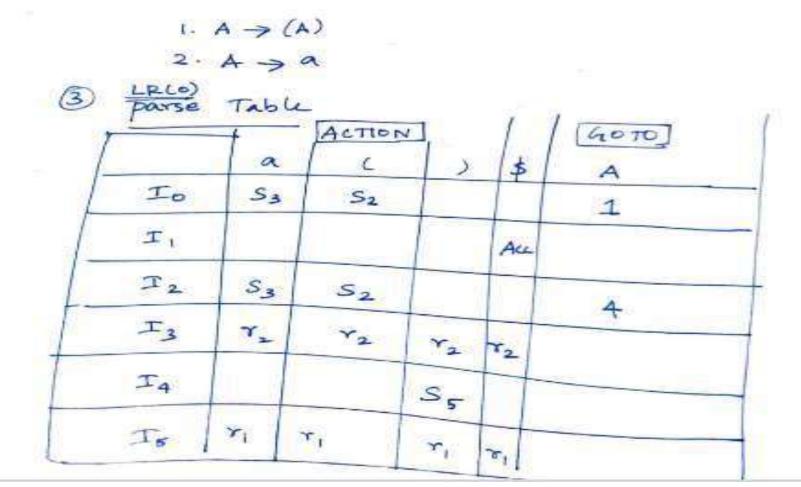
19CSB301/ATCDI/SLR Parsing/B.Vinodhini,ASP/CSE

7

Stack implementation:

Check whether the input **id** + **id** * **id** is valid or not.


STACK	INPUT	ACTION
0	id + id * id \$	GOTO (I_0 , id) = s5; shift
0 id 5	+ id * id \$	GOTO (I_5 , +) = r6; reduce by $F \rightarrow id$
0 F 3	+ id * id \$	GOTO $(I_0, F) = 3$
		GOTO (I_3 , +) = r4 ; reduce by $T \rightarrow F$
0 T 2	+ id * id \$	$GOTO(I_0, T) = 2$
		GOTO (I_2 , +) = r2 ; reduce by $E \to T$
0 E 1	+ id * id \$	GOTO $(I_0, E) = 1$
		GOTO (I_1 , +) = s6; shift
0 E 1 + 6	id * id \$	GOTO (I_6 , id) = s5; shift
0 E 1 + 6 id 5	* id \$	GOTO (I_5 , *) = r6 ; reduce by $F \rightarrow id$
0 E 1 + 6 F 3	* id \$	GOTO $(I_6, F) = 3$
		GOTO (I_3 , *) = r4 ; reduce by $T \to F$
0 E 1 + 6 T 9	* id \$	GOTO $(I_6, T) = 9$
		GOTO (I_9 , *) = s7; shift


0 E 1 + 6 T 9 * 7	id \$	GOTO (I_7 , id) = s5; shift
0 E 1 + 6 T 9 * 7 id 5	\$	GOTO (I_5 , \$) = r6 ; reduce by $F \rightarrow id$
0 E 1 + 6 T 9 * 7 F 10	\$	GOTO (I_7 , F) = 10 GOTO (I_{10} , \$) = r3 ; reduce by T \rightarrow T * F
0 E 1 + 6 T 9	\$	GOTO $(I_6, T) = 9$ GOTO $(I_9, \$) = r1$; reduce by $E \rightarrow E + T$
0 E 1	\$	GOTO (I ₀ , E) = 1 GOTO (I ₁ , \$) = accept

