

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Preliminary Preparations

TESTING OF ELECTRICAL INSTALLATION

- Before any testing of low voltage electrical installations (and equipment)
 is carried out, a detailed physical inspection must be made to ensure that
 everything is to a relevant National standard, erected/installed in
 compliance with the IEE Regulations and not damaged in such a way that
 it could cause danger.
- In order to comply with these requirements, the Regulations give a checklist of items that, where relevant, should be inspected.
- However, before such an inspection, and test for that matter, is carried out, certain information must be available to the verifier.

TESTING OF ELECTRICAL INSTALLATIONS

Let us look then at the general content of the checklist:

Check #1 — Connection of conductors

Are terminations electrically and mechanically sound? Is insulation and sheathing removed only to a minimum to allow satisfactory termination?

Check #2 — Identification of conductors

Are conductors correctly identified in accordance with the regulations?

Check #3-Are cables installed such that account is taken of external influences, such as mechanical damage, corrosion and heat?

Check #4 — Conductor selection

Are conductors selected for current carrying capacity and voltage drop in accordance with the design? Check #5 — Connection of single pole devices

Are single pole protective and switching devices connected in the line conductor only?

Check #6 - Are all accessories and items of equipment correctly connected?

Check #7 – Thermal effects

Are fire barriers present where required and protection against thermal effects provided? Check #8 — Protection against shock

What methods have been used to provide protection against electric shock?

TESTING OF ELECTRICAL INSTALLATIONS

Are wiring systems installed so that they can have no harmful effect on non-electrical systems or so that systems of different currents or voltages are segregated where necessary?

Check #10 – Isolation and switching

Are the appropriate devices for isolation and switching correctly located and installed?

Check #11 – Undervoltage

Where undervoltage may give rise for concern, are there protective devices present?

Check #12 — Protective devices

Are protective and monitoring device

Are all protective devices, switches (where necessary) and terminals correctly labelled?

Check #14 — External influences

Have all items of equipment and protective measures been selected in accordance with the appropriate external influences?

Check #15 - Access

Are all means of access to switchgear and equipment adequate? s correctly chosen and set to ensure automatic disconnection and/or overcurrent?

TESTING OF ELECTRICAL INSTALLATIONS

Check #16 – Notices and Sign

Are danger notices and warning signs present?

Check #17 – single line diagram / Schemes

Are diagrams, instructions and similar information relating to the installation available?

Check #18 — Erection methods

Have all wiring systems, accessories and equipment been selected and installed in accordance with the requirements of the Regulations? Are fixings for equipment adequate for the environment?

CAUSES OF ELECTRIC SHOCK

Causes of being shocked by electricity can include:

- •Contact with a powerline or electrical arc flash
- Accidental contact with exposed electrical sources
- •Faulty electrical wiring, installations and repairs
- •Contact with metal, growing vegetation, or other conductive material exposed to electrical current, such as a metal ladder that touches a powerline or other exposed wire
- •Accidental contact with a downed power line, or with the earth near a downed powerline
- •Faulty swimming pool pumps or swimming pool lights, unbonded surfaces near a pool, or pool deck outlets lacking GFIC safety devices
- •Shock from faulty or unprotected electrical products, such as household appliances (e.g., hair dryers and toasters), power tools, medical devices, outlets, electrical plugs and extension cords
- •Three-prong-to-two-prong grounded plug adapters
- Lightning from thunderstorms
- •Construction machinery, such as cranes, scaffolds, lifts, dump trucks, ladders, and long conductive handled tools making contact with power lines
- Contact with electrical machinery
- •Contact with electricity-based weapons such as tasers
- •Entering switch cabinets, step-down transformers, or electrical cabinets without authorizations
- •Failure to enforce Lock Out/Tag Out (LOTO) safety procedures

common electric shock symptoms

The most common electric shock symptoms and injuries resulting from an accident with electricity include:

- Amputation
- Severe burns (external and internal)
- •Cardiac arrest and/or arrhythmia and/or fibrillation of the heart
- •Heart muscle damage, Brain injuries, Nerve damage
- Memory loss, Hearing loss, Seizures
- Respiratory failure,
- •Spine injury (injuries to the neck and back that occur when the electrical charge physically and forcefully throws a victim)
- Deformity at point of contact
- •Cataracts
- Loss of kidney function
- Secondary injuries caused by post-shock falls
- Numbness or <u>tingling</u>
- •Headaches,Loss of consciousness,Muscle pain
- •Compartment syndrome (which occurs when muscle damage causes a person's limbs to swell)
- Shortness of breath/Chest pain
- Paralysis, Vision, speech and hearing problems
- •Confusion, Muscle, tendon, and even disc injuries caused by involuntary contractions when the "let go" threshold is exceeded

THANK YOU