SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE-35
Accredited by NBA-AICTE and Accredited by NAAC - UGC with A+ Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME: 19EET302/ Power System 1

III YEAR / V SEMESTER
Unit 2 - POWER SYSTEM MODELLING
Topic 1: Modelling of medium transmission lines-Nominal T method

What We'll Discuss

TOPIC OUTLINE

- Guess the topic
- Inductance of Three phase overhead line Symmetrical spacing -Applications

Medium Lines - Nominal T Model

In a nominal T model of a medium transmission line, the series impedance is divided into two equal parts, while the shunt admittance is concentrated at the centre of the line.

Medium Lines - Nominal T Model

Sending end voltage and current can be obtained by application of KVL and KCL. to the circuit shown below

$$
V_{a b}=V_{r}+\frac{Z}{2} I_{r}
$$

Current in the capacitor can be given as,

$$
\begin{gathered}
I_{a b}=\frac{V_{a b}}{Z_{a b}}=Y Z_{a b} \\
I_{s}=I_{r}+I_{a b}
\end{gathered}
$$

By Kirchoff's current law at node a,

$$
I_{s}=I_{r}+Y V_{a b}
$$

$$
I_{s}=I_{r}+Y\left(V_{r}+\frac{Z}{2} I_{r}\right)
$$

Medium Lines - Nominal T Model

By Kirchoff's voltage law

$$
V_{s}=V_{a b}+\frac{Z}{2} I_{s}
$$

$$
V_{s}=V_{r}+\frac{Z}{2} I_{r}+\frac{Z}{2}\left[Y V_{r}+\left(1+\frac{Z Y}{2}\right) I_{r}\right]
$$

Equation of Sending end voltage Vs and current Is can be written in the matrix form

$$
\left[\frac{V_{s}}{I_{s}}\right]=\left[\begin{array}{cc}
1+\frac{Z Y}{2} & Z\left(1+\frac{Z Y}{4}\right) \\
Y & 1+\frac{Z Y}{2}
\end{array}\right]\left[\begin{array}{l}
\frac{V_{r}}{I_{r}}
\end{array}\right] \quad\left[\begin{array}{l}
V_{r} \\
I_{r}
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
V_{r} \\
I_{r}
\end{array}\right]
$$

$$
A=D=1+\frac{Z Y}{2}
$$

Hence, the ABCD constant of the nominal T-circuit model of a medium line are

$$
B=Z\left(1+\frac{Z Y}{4}\right)
$$

$$
C=Y
$$

Phasor Diagram - Nominal T Model

The phasor diagram of the nominal T-circuit is shown below. It is drawn for a lagging power factor.

Phasor diagram of a nominal T network

Phasor Diagram Parameters

$\mathrm{OA}=\mathrm{Vr}-$ receiving end voltage to neutral. taken as a reference phasor. $\mathrm{OB}=\mathrm{Ir}-$ load current lagging behind Vr by an angle \varnothing.
$A C=\operatorname{lr} R / 2-$ Voltage drop in the reactance of the right-hand half of the line.
OD1 = Vab - voltage at the midpoint of the line across the capacitance C.
$B E=l a b-c u r r e n t$ in the capacitor. It leads the voltage Vab by 90
OE = Is -sending-end current, the phasor sum of load current and capacitor current.

Phasor Diagram Parameters

D1C1 $=$ IsR/2 - voltage drop in the resistance on the left-hand side of the lines

C1D $=$ Is $\mathrm{X} / 2-$ voltage drop in the reactance in the left half of the line.
$\mathrm{OD}=\mathrm{Vs}$ - sending end voltage. It is the phasor sum of the of Vab and the impedance voltage drop in the left-hand half of the line
$\emptyset \mathrm{s}$ - phase angle at the sending end. $\cos \emptyset \mathrm{s}$ is the power factor at the sending end of the line..

FROM THEORY TO PRACTICE

Practical Applications

RECALL TIME

ASSESSMENT
 TIME

