

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Troblems: IE-TINU Problems: IE-TINU Find Fourier transform of $f(x) = \begin{cases} x & |x| \le a \\ 0 & |x| > a \end{cases}$ tourier transform of f(x) is, $F(s) = F[-f(x)] = \frac{1}{\sqrt{2\pi}} \int f(x) e^{iSx} dx$ $= \frac{1}{\sqrt{2\pi}} \int x e^{iSx} dx.$ $= \frac{1}{\sqrt{2\pi}} \int_{-\alpha}^{\alpha} \chi(\cos sx + i\sin sx) dx$ $\frac{1}{\sqrt{2\pi}} \int_{-a}^{a} \frac{dx}{dx} = \frac{1}{a} \int_{-a}^{a} \frac{dx}{$ $\frac{1}{\sqrt{2\pi}} \int (0+i) \cdot 2 \int x \sin 3x \, dx$ $x = \frac{2i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \chi \sin x \, dx$ $= i \cdot \frac{2}{\sqrt{2\pi}} \int_{-\frac{\pi}{3}}^{-\frac{\pi}{3}} \cos 3x + \frac{\sin 3x}{3^2} \int_{0}^{\frac{\pi}{3}} \sin 4x$ $= i \frac{2}{\sqrt{2\pi}} \left[-\frac{a \cos a s}{s} + \frac{\sin s a}{12} \right]$ $i\int_{\pi}^{\infty} \left[\frac{\sin \alpha s - \alpha s \cos \alpha s}{s^2}\right]$

(An Autonomous Institution) DEPARTMENT OF MATHEMATICS

Find the Fourier transform of (2) $f(x) = \begin{cases} x^2, |x| \le a \\ 0, |x| > a \end{cases}$ Fourier transform of f(x) is, $F(s) = F[f(x)] = \frac{1}{\sqrt{a\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx.$ $HW = \frac{1}{\sqrt{2\pi}} \left[\int_{-\infty}^{\infty} x^2 e^{i\xi x} dx \right]$ $= \frac{1}{\sqrt{2\pi}} \left[\int_{-\alpha}^{\alpha} \chi^{2} \left(\cos 3\chi + i \sin 3\chi \right) d\chi \right]$ $= \frac{1}{\sqrt{2\pi}} \left[\int_{-a}^{a} \chi^2 \cos x \, dx + i \int_{a}^{a} \chi^2 \sin x \, dx \right]$ $= \frac{1}{\sqrt{2\pi}} \left[2 \int x^2 \cos 3x \, dx + 0 \right]$ $= \frac{2}{\sqrt{2\pi}} \left[\chi^2 \left(\frac{\sin s \pi}{s} \right) - 2 \chi \left(\frac{-\cos s \pi}{s^2} \right) + 2 \right]$ (-368200) (20012) (-5003x) (-5003x) $= \int \frac{2}{\pi} \int \frac{a^2 s^2}{s^2} \sin as + 2as \cos as - 2\sin as}{s^3}$ Find F.T of $f(x) = \begin{cases} e^{iKx}, a < x < b \\ 0, x < a & x > b \end{cases}$ $F(s) = 1 = [e^{ib(k+s)} - e^{ia(k+s)}]$ aTT i (K+S

FOURIER TRANSFORMS

(An Autonomous Institution) DEPARTMENT OF MATHEMATICS

(4) Find Fourier transform of $f(x) = \begin{cases} 1 & 0 < x < 0 \\ 0 & 0 & x < 0 \end{cases}$ $HN = \frac{1}{\sqrt{2\pi} is} = \frac{1}{e^{ibs}} = e^{ias}$ (5) Find F. T of $f(x) = \begin{cases} 1 & |x| \le a \\ 0 & |x| > a \end{cases}$ hence $\int \frac{\sin x}{\sin x} dx \quad (ii) \int \frac{\sin t}{t}^2 dt \quad (or)$ Soln; $F(s) = F[f(x)] = \frac{2}{\sqrt{2\pi}} \left(\frac{\sin as}{s} \right)$ (i) Inverse Fourier transform of f(x) is $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) e^{-isx} ds$ $=\frac{1}{\sqrt{2\pi}}\int \frac{2}{\sqrt{2\pi}}\left(\frac{\sin as}{s}\right)\left(\cos sx-\right)$ (Sinsx) ds $\frac{e^{ab}}{f^{ab}} = \frac{2}{\sqrt{2}} \frac{x}{\sqrt{2}} \int \frac{\sin a s}{\sqrt{2}} \cos a s x \, ds$ Sinas cossa ds $\left(\frac{\sin\alpha s}{s}\right)\cos sx\,ds = \frac{\pi}{2}f(x).$ AND THE STATE

(An Autonomous Institution) DEPARTMENT OF MATHEMATICS

Put
$$x = 0$$
,
 $f(tox_n \int_{-\infty}^{\infty} \left(\frac{\sin as}{s}\right) (os \ o \ ds = \frac{\pi}{2} f(o)$,
 $\int_{-\infty}^{\infty} \frac{\sin as}{s} ds = \frac{\pi}{2} (i)$,
Let $as = x \Rightarrow a.ds = dx$.
 $s = x/a$.
 $\int_{-\infty}^{\infty} \frac{\sin x}{x/a} \frac{dx}{x} = \frac{\pi}{2}$.
 $\int_{-\infty}^{\infty} \frac{\sin x}{x/a} \frac{dx}{x} = \frac{\pi}{2}$.
 $\int_{-\infty}^{\infty} \frac{\sin x}{x/a} \frac{dx}{x} = \frac{\pi}{2}$.
(i) Using Paasevals identity,
 $\int_{-\infty}^{\infty} (f(x))^2 dx = \int_{-\infty}^{\infty} (F(s))^2 \frac{ds}{s}$.
 $\int_{-\infty}^{q} 1^2 dx = \int_{-\infty}^{\infty} (\frac{2\pi}{\sqrt{2\pi}} \frac{\sin as}{s})^2 ds$.
 $\int_{-\infty}^{q} a = \frac{A}{\pi} \int_{-\infty}^{\infty} (\frac{\sin as}{s})^2 ds$.
 $\pi a = 2 \int_{-\infty}^{\infty} (\frac{\sin as}{s})^2 ds$.
 $\pi a = 2 \int_{-\infty}^{\infty} (\frac{\sin as}{s})^2 ds$.

FOURIER TRANSFORMS

(An Autonomous Institution) DEPARTMENT OF MATHEMATICS

Self-Reciprocal If a transformation of a function f(x) is F(s) then the function f(x) is called self reciprocal. () = xb $Example : -f(x) = e^{-x^2/2}$ $F[f(x)] = F(x) = e^{-x^2/2} = f(x)$ It is self-reciprocal under Fourier transforms. Note: $\int_{-\infty}^{\infty} e^{-t^2} dt = \sqrt{\pi}$ If $F[f(x_i)]$ is f(s), then $f(x_i)$ is self seciprocal under Fourier transform Problems based on Self-reciprocal:) Find Fourier transform of $e^{-a^2x^2}$ and hence find F.T of $e^{-x^2/2}$ $\frac{dsoln:}{F[f(x)]} = F(d) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{idx} dx$ $=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-\alpha^{2}\chi^{2}}e^{is\chi}dx$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-(a^{2}x^{2} - isx)} dx$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\left[\left(\alpha x\right)^{2} - isx + \left(\frac{is}{2\alpha}\right)^{2} - \left(\frac{is}{2\alpha}\right)^{2}\right]} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\left(\alpha x - \frac{is}{2\alpha}\right)^{2}} e^{\left(\frac{is}{2\alpha}\right)^{2}} dx$$

$$= \frac{1}{\sqrt{2\pi}} e^{-s^{2}/4a^{2}} \int_{-\infty}^{\infty} - \left(\frac{\alpha x - \frac{is}{2\alpha}}{a}\right)^{2}} dx$$
Put $E = \alpha x - \frac{is}{2\alpha}$
 $dt = \alpha dx \Rightarrow dx = dt/\alpha$
 $F[f(x)] = \frac{1}{\sqrt{2\pi}} \frac{e^{-s^{2}/4a^{2}}}{a\sqrt{2}} \int_{-\infty}^{\infty} e^{-t^{2}} dt$

$$= \frac{e^{-s^{2}/4a^{2}}}{a\sqrt{2}\sqrt{f}} \int_{-\infty}^{\pi} e^{-s^{2}/4a^{2}} \sqrt{f}$$
 $F[f(x)] = F(s) = \frac{e^{-s^{2}/4a^{2}}}{a\sqrt{2}}$
Put $s = x$, $\alpha = 1/\sqrt{s}$,
 $F(e^{-x^{2}/2}) = e^{-s^{2}/2}$
Show that $e^{-x^{2}/2}$ is self reciprocal w.r.t
Fourier transform
 $soln:$
 $F[f(x)] = F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(\frac{x^{2}}{2} - isx)} dx$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(\frac{x^{2}}{2} - isx)} dx$$

FOURIER TRANSFORMS

Machena 27 5 2313 por ($\frac{x}{1}$ $\frac{1}{2}$ \frac Take $E = \frac{x}{\sqrt{2}} - \frac{is}{\sqrt{2}}$ $dt = \frac{dx}{\sqrt{2}} \Rightarrow dx = \sqrt{2} dt$ $F[f(\alpha)] = \frac{1}{\sqrt{2\pi}} e^{-\frac{5^2}{2}} \int e^{-\frac{2}{5}} e^{-\frac{2}{5}} dt$ $= \frac{1}{\sqrt{\pi}} e^{-s^2/2} \int e^{-t^2} dt$ $= \frac{1}{\sqrt{\pi}} e^{-5^{2}/2} \sqrt{\pi}$ F(s) = $e^{-5^{2}/2}$. e-x²/2 is self reciprocal under Fourier transforms. Convolution : The convolution of two functions f(x) and g(x) is denoted by, $(f \star g)(x) = -f(x) \star g(x) = \frac{1}{\sqrt{2\pi} - \infty} \int f(t) g(x-t) dt$ Convolution theorem: If FEf(x)] and F[g(x)] are the Fourier transforms of f(x) and g(x) respectively. Then the Fourier transform of Convolution of f(x).g(x) is the product of their Fourier transforms $F[f(x) + g(x)] = F(s) \cdot G(s) = F[f(x)] \cdot F[g(x)]$

FOURIER TRANSFORMS

Page 7