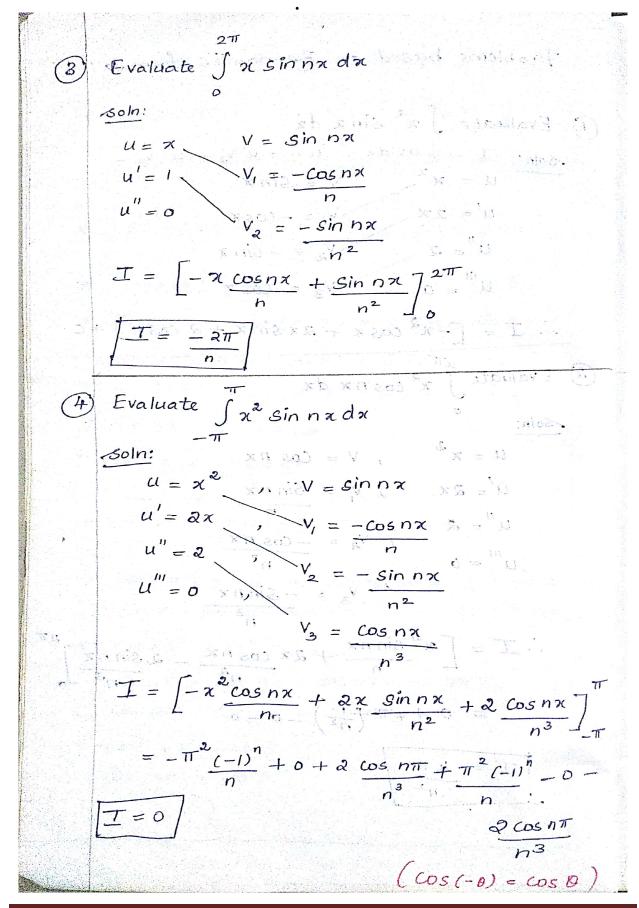


(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

	19 MAT 201	
	TRANSFORMS AND PARTIAL DIFFER	ENTIAL
	EQUATIONS	
	UNIT - I - FOURIER SERIES	, K
	BASIC FORMULAS:	*
U	$\frac{d}{dx}(x^n) = nx^{n-1} \times x^n$	*
(2)	d(ax) = ax	
	$\frac{d}{dx} \stackrel{\text{an}}{=} = ae$ $\frac{d}{dx} \stackrel{\text{an}}{=} = ae$	K
➂.	$\frac{d}{d} = (\sin ax) = a \cos ax$	A
	5200 A200 \$ = (5-A) 200 4- (5 PA) 200.	A
(4)	$\frac{d}{dx}(\cos ax) = -a \sin ax$ $\frac{d}{dx}(\cos ax) = -a \sin ax$	K
(5)	$\int \sin ax dx = -\cos ax + \cos ax = \cos ax$	A .
	a x 5 205 - 1 = x 205	· *
(6)	$\int \cos ax dx = \frac{\sin ax}{+c} + c$	
	a 55 800 +1 = 35 800	*
7	$\int e^{\alpha x} dx = \frac{e^{\alpha x}}{1 + c}$	
Am int	Sin गाम = o - किर वस प्रमालक कि मा महिए व	*
8	$\int_{\mathcal{X}}^{n} d\hat{x} = \frac{x^{n+1}}{n+1} \mp 2 \sin x - \pi \cos x$	
	$\frac{n+1}{rspsant} \approx 2i \cdot n \cdot (1-) = \pi n \cdot 200$	
9	$\int (ax+b) dx = (ax+b) + c$	
	(= 178 wa (n+1) 200 = 778, 200)	
	[dx - lnox+c 3013 (0-)112	*
(10)	$\int \frac{dx}{x} = \log x + C.$	
The second second		

Bernoulli's formula:
$* \int uv \ dx = uv_1 - u'v_2 + u''v_3 - \cdots$
* $\int e^{ax} \sin bx dx = \frac{e^{ax}}{2 \cdot 1^{2}} (a \sin bx - b \cos bx)$
$\frac{1}{a^2+b^2}$
$# \int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx)$
그렇게 되는 사람들은 얼마를 보고 있다면 되었다. 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
$\star Sin(A+B) + Sin(A-B) = 2 SinA cos B$
* Sin $(A+B)$ - Sin $(A-B)$ = 2 Cos A Sin B
$* \cos(A+B) + \cos(A-B) = 2 \cos A \cos B$
$+ \cos(A+B) - \cos(A-B) = -2 \sin A \sin B$
Sin 2x = 2 Sin x cos x 200 - 200 x 0 miz
$\pi \sin^{2} x = \frac{1 - \cos 2x}{2}$
(i) Cos an docs Sinax 40 m
$ + \cos^2 x = \frac{1 + \cos ax}{2} $
* Sin nπ = 0 fox all values of h, if n is an integ
$Sin \pi = Sin 2\pi = Sin 3\pi = \dots = Sin n\pi = 0$
\star Cos $n\pi = (-1)^n$, n is an integer
$\cos \pi = \cos 3\pi = \cos 5\pi = \cos 7\pi = \cdots = (-1)$
$\cos 2\pi = \cos 4\pi = \cos 6\pi = \dots = 1$
Sin(-0) = -Sin0
$\cos(-\theta) = \cos\theta$


Problems based on Bernoulli's formula::

1 Evaluate
$$\int x^2 \sin x \, dx$$

Soln: $I = \int uv \, dx = uv_1 - u'v_2 + u''v_3 - u' = u' = 2$
 $u = x^2$
 $v = \sin x$
 $v' = 2 + v_2 = -\cos x$
 $v'' = 0$
 $v'' = 0$

Evaluate
$$\int_{C} Cx + x^{2} \int_{C} Cx + x$$

(An Autonomous Institution)
DEPARTMENT OF MATHEMATICS

UNIT-I

FOURIER SERIES.

Periodic function:

A function f(x) which satisfies the relation f(x+T) = f(x) for all x and some T is called a periodic function. The smallest Positive number T for which the relation holds is called the period of f(x).

Example:

- t Sinx, cosx are periodic function with period att.
- * Sinnx and cosnx are periodic function with period 21
 - * tanx is a periodic function with period

Dirichlet's Conditions:

- \star f(x) is periodic, Single valued and finite.
- * f(x) has finite number of finite discontinuities in any one period.
- * f(x) has a finite number of maxima

(1-1) - 0 - (1-1) +