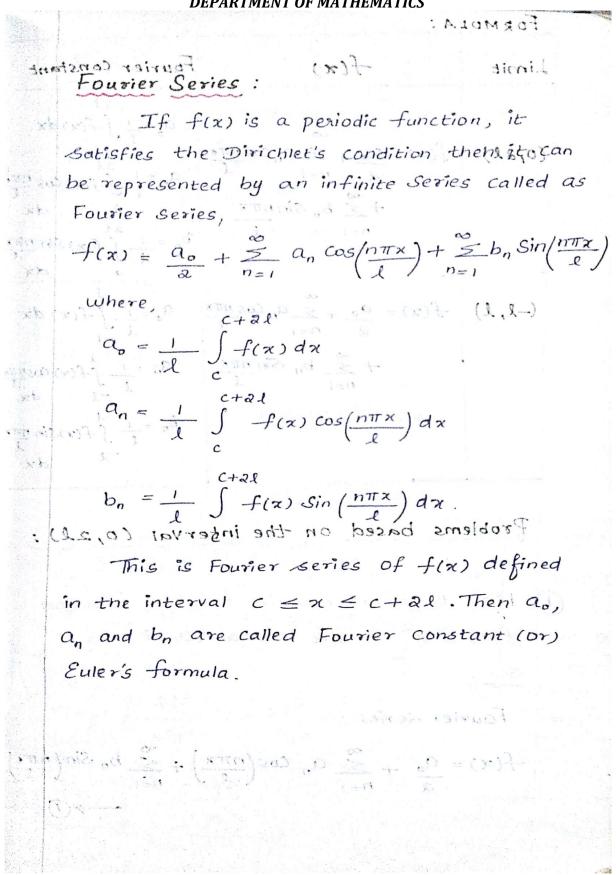


(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS



	FORMUL	A:		
	Limit	f(n) . Sain	Fourier Constant	
	(o;al)	$f(x) = \frac{a_0}{a} + \frac{5}{2} a_n \cos \frac{n\pi a}{2}$	$a_{0} = \frac{1}{l} \int f(x) dx$ $a_{1} = \frac{1}{l} \int f(x) \cos \frac{n\pi}{l}$ $a_{2} = \frac{1}{l} \int f(x) \sin \frac{n\pi}{l}$ $a_{3} = \frac{1}{l} \int f(x) \sin \frac{n\pi}{l}$ $a_{4} = \frac{1}{l} \int f(x) \sin \frac{n\pi}{l}$	
	Problems based on the interval (0,21):			
(1) Find the Fourier Series for the function				
$f(x) = x^2$ in the interval $(0, 2il)$				
	Fourier series:			
	f(x)	$f(x) = \frac{a_0}{a} + \frac{s}{n=1} a_n \cos\left(\frac{n\pi x}{l}\right) + \frac{s}{n=1} b_n \sin\left(\frac{n\pi x}{l}\right)$		
			$\longrightarrow \mathcal{O}$	

To find
$$a_o$$
:
$$a_o = \frac{1}{l} \int_0^l f(x) dx$$

$$= \frac{1}{l} \int_0^l x^3 dx$$

$$= \frac{1}{l} \int_0^l x^3 dx$$

$$= \frac{1}{l} \int_0^l x^3 dx$$

$$= \frac{1}{l} \int_0^l f(x) \cos\left(\frac{n\pi x}{l}\right) dx$$

$$= \frac{1}{l} \int_0^l x^3 \cos\left(\frac{n\pi x}{l}\right) dx$$

$$= \frac{1}{l} \int_0^l \frac{x^3}{n^2\pi^2} \cos\left(\frac{n\pi x}{l}\right) dx$$

$$= \frac{1}{l} \int_0^l \frac{x^3}{n^2} \cos\left(\frac{n\pi x}{l}\right) dx$$

$$= \frac{1}{l} \int_0^l \frac{x^3}{n^$$

To find bn:

$$b_{n} = \frac{1}{l} \int_{0}^{\infty} f(x) \sin \frac{n\pi x}{l} dx$$

$$= \frac{1}{l} \int_{0}^{\infty} x^{2} \sin \left(\frac{n\pi x}{l}\right) dx$$

$$= \frac{1}{l} \left[-x^{2} \frac{l}{n\pi} \cos \frac{n\pi x}{l} + 2x \frac{l^{2}}{n^{2}\pi^{2}} \sin \frac{n\pi x}{l} + 2t^{2} \sin \frac{n\pi x}{l} + 2t^{2} \cos \left(\frac{n\pi x}{l}\right) \right]_{0}^{2l}$$

$$= \frac{1}{l} \left[-\frac{l}{l} \frac{l^{3}}{n\pi} + 2t^{3} - 2t^{3} - 2t^{3} \right]_{0}^{2l}$$

$$= \frac{1}{l} \left[-\frac{l}{l} \frac{l^{3}}{n\pi} + 2t^{3} - 2t^{3} - 2t^{3} \right]_{0}^{2l}$$

$$= \frac{1}{l} \left[-\frac{l}{l} \frac{l^{3}}{n\pi} + 2t^{3} - 2t^{3} - 2t^{3} \right]_{0}^{2l}$$

$$= \frac{1}{l} \left[-\frac{l}{l} \frac{l^{3}}{n\pi} + 2t^{3} - 2t^{3} - 2t^{3} \right]_{0}^{2l}$$

$$= \frac{1}{l} \left[-\frac{l}{l} \frac{l^{3}}{n\pi} + 2t^{3} - 2t^{3} - 2t^{3} \right]_{0}^{2l}$$

$$= \frac{1}{l} \left[-\frac{l}{l} \frac{l^{3}}{n\pi} + 2t^{3} - 2t^{3} - 2t^{3} \right]_{0}^{2l}$$

$$= \frac{1}{l} \left[-\frac{l}{l} \frac{l^{3}}{n\pi} + 2t^{3} - 2t^{3} - 2t^{3} \right]_{0}^{2l}$$

$$= \frac{1}{l} \left[-\frac{l}{l} \frac{l^{3}}{n\pi} + 2t^{3} - 2t^{3} - 2t^{3} - 2t^{3} \right]_{0}^{2l}$$

$$= \frac{1}{l} \left[-\frac{l}{l} \frac{l^{3}}{n\pi} + 2t^{3} - 2t^{3} - 2t^{3} - 2t^{3} \right]_{0}^{2l}$$

$$= \frac{1}{l} \left[-\frac{l}{l} \frac{l^{3}}{n\pi} + 2t^{3} - 2t^{3} - 2t^{3} - 2t^{3} - 2t^{3} \right]_{0}^{2l}$$

$$= \frac{1}{l} \left[-\frac{l}{l} \frac{l^{3}}{n\pi} + 2t^{3} - 2t^{$$

To find
$$a_0$$
:
$$a_0 = \frac{1}{4} \int_0^2 f(x) dx$$

$$= \frac{1}{4} \int_0^2 f(x) dx \quad (\because l = 1)$$

$$= \int_0^2 (2x - x^2) dx$$

$$= \int_0^2 \frac{2x^2}{3} - \frac{x^3}{3} \int_0^2 = 4 - \frac{8}{3} = \frac{12 - \frac{8}{3}}{3}$$
To find a_n :
$$a_n = \frac{1}{4} \int_0^2 f(x) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

$$= \int_0^2 (2x - x^2) \cos n\pi x dx$$

To find bn:

$$b_{n} = \frac{1}{\ell} \int_{0}^{2} f(x) \sin n\pi x \, dx$$

$$= \frac{1}{\ell} \int_{0}^{2} f(x) \sin n\pi x \, dx$$

$$= \left[-(2x - x^{2}) \cos n\pi x + (2 - 2x) \frac{\sin n\pi}{n^{2} \pi^{2}} \right]$$

$$-2 \cos n\pi x - 2 \cos n\pi x$$

$$-3 \cos n\pi x - 2 \cos n\pi x - 2 \cos n\pi x$$

$$-3 \cos n\pi x - 2 \cos n\pi x$$

$$-3 \cos n\pi x - 2 \cos n\pi x$$

$$= \frac{3}{\ell} \int_{0}^{2} f(x) \, dx$$

$$-1 \int_{0}^{2} f(x) \, dx$$

$$= \frac{3}{\ell} \int_{0}^{2} f(x) \, dx$$

$$= \frac{1}{\ell} \int_{0}^{2} f(x) \, dx$$

$$= \frac{1}{\ell} \int_{0}^{2} f(x) \, dx$$

$$a_{n} = \int_{0}^{1} x \, dx + \int_{0}^{2} (2-x) dx$$

$$= \left(\frac{x^{2}}{2}\right)^{1} + \left(2x - \frac{x^{2}}{2}\right)^{\frac{1}{2}}$$

$$a_{n} = \frac{1}{1} \int_{0}^{1} f(x) \cos \frac{n\pi x}{2} \, dx$$

$$= \int_{0}^{1} x \cos n\pi x \, dx + \int_{0}^{2} (2-x) \cos n\pi x \, dx$$

$$= \left[x \sin \frac{n\pi x}{n\pi} + \frac{\cos n\pi x}{n^{2}\pi^{2}}\right]^{1} + \left[(2-x)\frac{\sin n\pi x}{n\pi} - \frac{\cos n\pi x}{n\pi}\right]^{\frac{1}{2}}$$

$$= \frac{(-1)^{n}}{n^{2}\pi^{2}} - \frac{1}{n^{2}\pi^{2}} + \frac{(-1)^{n}}{n^{2}\pi^{2}}$$

$$a_{n} = \frac{2}{n^{2}\pi^{2}} \left[(-1)^{n} - 1\right]$$

$$a_{n} = \frac{2}{n^{2}\pi^{2}} \left[(-1)^{n} - 1\right]$$

$$b_{n} = \frac{1}{1} \int_{0}^{2} f(x) \sin \frac{n\pi x}{x} \, dx$$

$$= \frac{1}{1} \int_{0}^{2} f(x) \sin \frac{n\pi x}{x} \, dx$$

$$= \int_{0}^{1} x \sin \frac{n\pi x}{x} \, dx + \int_{0}^{2} (2-x) \sin n\pi x \, dx$$

$$= \begin{bmatrix} -x \cos n\pi x + \sin n\pi y \\ n\pi \end{bmatrix} + \begin{bmatrix} -(2-x)\cos n\pi x - \sin n\pi x \\ n^{2}\pi^{2} \end{bmatrix}$$

$$= \begin{bmatrix} -(2-x)\cos n\pi x - \sin n\pi x \\ n^{2}\pi^{2} \end{bmatrix}$$

$$= \begin{bmatrix} -(2-x)\cos n\pi x - \sin n\pi x \\ n^{2}\pi^{2} \end{bmatrix}$$

$$= \begin{bmatrix} -(2-x)\cos n\pi x - \sin n\pi x - \sin n\pi x \\ n^{2}\pi^{2} \end{bmatrix}$$

$$= \begin{bmatrix} -(2-x)\cos n\pi x - \sin n\pi x - \sin n\pi x \\ n^{2}\pi^{2} \end{bmatrix}$$

$$= \begin{bmatrix} -(2-x)\cos n\pi x - \sin n\pi x - \sin n\pi x \\ n^{2}\pi^{2} \end{bmatrix}$$

$$= \begin{bmatrix} -(2-x)\cos n\pi x - \sin n\pi x - \sin n\pi x \\ n^{2}\pi^{2} \end{bmatrix}$$

$$= \begin{bmatrix} -(2-x)\cos n\pi x - \sin n\pi x - \sin n\pi x \\ n^{2}\pi^{2} \end{bmatrix}$$

$$= \begin{bmatrix} -(2-x)\cos n\pi x - \sin n\pi x - \sin n\pi x \\ n^{2}\pi^{2} \end{bmatrix}$$

$$= \begin{bmatrix} -(2-x)\cos n\pi x - \sin n\pi x - \sin n\pi x - \sin n\pi x \\ n^{2}\pi^{2} \end{bmatrix}$$

$$= \begin{bmatrix} -(2-x)\cos n\pi x - \sin n\pi x \\ n^{2}\pi^{2} \end{bmatrix}$$

$$= \begin{bmatrix} -(2-x)\cos n\pi x - \sin n\pi x -$$

To find
$$a_n$$
:
$$a_n = \frac{1}{\pi} \int_0^{2\pi} x^2 \cos nx \, dx$$

$$= \frac{1}{\pi} \left[x^3 \frac{\sin nx}{n} + \frac{2x \cos nx}{n^2} - \frac{2\sin nx}{n^3} \right]_0^{2\pi}$$

$$= \frac{1}{\pi} \left[0 + \frac{4\pi}{n^2} - 0 \right]$$

$$a_n = \frac{4\pi}{n^2}$$
To find b_n :
$$b_n = \frac{1}{\pi} \int_0^{2\pi} x^2 \sin nx \, dx$$

$$= \frac{1}{\pi} \left[-x^2 \frac{\cos nx}{n} + \frac{2x \sin nx}{n^2} + \frac{2\cos nx}{n^3} \right]_0^{2\pi}$$

$$= \frac{1}{\pi} \left[-\frac{4\pi^2}{n} + \frac{2}{n^3} - \frac{2}{n^3} \right]$$

$$b_n = -\frac{4\pi}{n}$$
Subs a_0 , a_n and b_n in a_n .
$$f(x) = \frac{4\pi^2}{n} + \frac{2\pi}{n} \cos nx + \frac{2\pi}{n} \sin nx$$