

SNS COLLEGE OF TECHNOLOGY

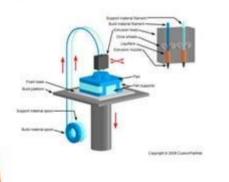
Coimbatore-35 An Autonomous Institution

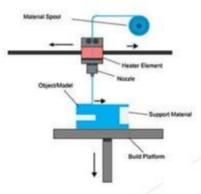
Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AEROSPACE ENGINEERING

19ASZ401 – 3D PRINTING FOR SPACE COMPONENTS IV YEAR VII SEM UNIT-II DESIGN FOR ADDITIVE MANUFACTURING TOPIC: DESIGN FOR AM

NAME: Mr.N.Venkatesh., M.Tech Assistant Professor Aerospace Engineering SNS College of Technology


- How FDM Works
- Support Material
- Think Outside the Box
- Layer Resolution and Part Height
- Radius Corners
- Remove Excess Material
- Avoid Unnecessary Supports
- Bridges
- Z Axis Holes and Perimeters
- Part Strength and Layer Direction
- When in Doubt Consult the Manual



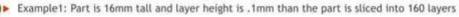
FDM printers extrude a thermoplastic from a nozzle onto a build platform

Builds part layer by layer

- 2 Types
 - Dissolvable
 - More freedom of design
 - Better surface finish on underside of part
 - Ability to easily clear supports from internal passages
 - Same as part material
 - Rough finish on supported areas of part
 - Removed by mechanical methods

Think Outside The Box and The Complexity Paradox

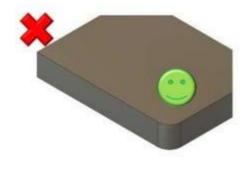
- AM offers a wider range of design possibilities
- Use generative design and topology optimization when possible/practical
- Large degree of design freedom eliminates the need for sub assemblies in some cases
- Lattices and organic structures

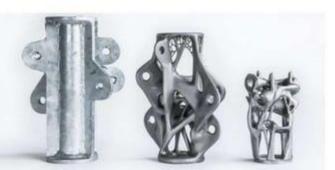


Layer Resolution VS. Part Height

- When possible part height should be divisible by layer resolution (layer thickness) to ensure accurate part height.
- Printer can only print multiples of the layer height in the z direction so if the part is not divisible by the layer height the part my end up shorter that designed.

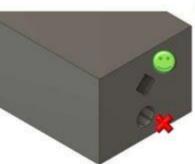
Example 2: Part is 56.58mm tall and layer height is .1mm than part would be sliced into




Radius Corners/Add Fillets

- Radius corners to speed up print times and reduce bulging in corners
- Add fillets to intersections of thin features to add additional strength

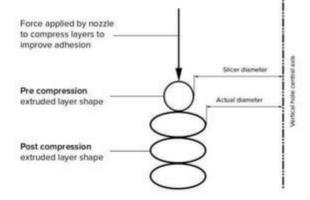
- Remove unnecessary material from designs to reduce part cost
- AM is opposite of CNC where you may leave material to reduce machining costs

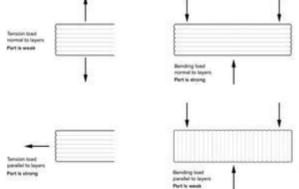

Use self sustaining angles when possible

A self sustaining angle is 45 degrees or more

Avoid Unnecessary Supports

 Use self sustaining part geometry for the entire part not just potential overhangs


- Bridges span the cap between two features.Keep bridges short and avoid when possible
- Longer bridges will sag


- Expect holes in some cases to be smaller than nominal diameter
- Expect parts overall to be larger than nominal dimensions

Part Strength and Layer Direction

- Part strength is significantly impacted by the layer orientation
- Orient part correctly on the build platform to provide strength in key directions

When in Doubt Consult the Manual

 Each printer is different so it is best to consult the manufacturer's design guides for best results

THANK YOU