

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AEROSPACE ENGINEERING

19ASB201 Aero Mechanics of Solids

II YEAR III SEM

UNIT 1 – STRESS STRAIN DEFORMATION OF SOLIDS

TOPIC 1 – Rigid and Deformable bodies - Strength, Stiffness and Stability

STRENGTH OF MATERIALS

- Mechanics of Solids also called Aero Mechanics of materials, is a subject which deals with the behavior of solid objects subject to stresses and strains.
- The study of strength of materials often refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts.

RIGID BODY

- A rigid body is defined as a body on which the distance between two points never changes whatever be the force applied on it.
- Practically, there is no rigid body.

DEFORMABLE BODY

A deformable body is defined as a body on which the distance between two points changes under action of some forces when applied on it. The study of the property of this body is called **Elasticity**

ELASTICITY

- The property of a body by virtue of which it tends to regain its original shape and size when deforming force is removed.
- All solids show the property of elasticity.

19ASB201 Aero Mechanics of Solids / NEHRU K /AP/AERO/SNSCT

19ASB201 Aero Mechanics of Solids / NEHRU K /AP/AERO/SNSCT

$\begin{array}{l} Stress = \\ F \end{array} \begin{array}{c} External \ deforming \ force \\ Area \end{array}$

• Dimensional formula of the stress =

• The SI unit of stress is $Nm^{-2} = Pascal$

Same as that of pressure

19ASB201 Aero Mechanics of Solids / NEHRU K /AP/AERO/SNSCT

 $\therefore = ML^{-1}T^{-2}$

BEHAVIOR OF SOLID OBJECTS

9/1/2023

TYPES OF STRESS...

- The stress developed in a body depends upon how the external forces are applied over it. On this basis, there are two types of stress,
 - i. **Normal Stress**
 - ii. **Tangential Stress**

- **NORMAL STRESS**
- Is a stress that occurs when the surface of the body is loaded by an axial force.

 σ – Normal Stress P – Axial Force A – Cross Sectional Area

- Normal stress is of two types;
 - **Tensile stress** 1.
 - ii. **Compressive stress**

TENSILE STRESS

- Is the stress state leading to expansion; that is, the length of a material tends to increase in the tensile direction.
- This is an example of tensile stress tester (Universal Testing Machine)

DUCTILE BEHAVIOR

Ductility is a solid material's ability to deform under tensile stress. ullet

9/1/2023

Copper wires

COMPRESSIVE STRESS

• A force that attempts to squeeze or compress a material.

Here, the Universal Testing Machine concrete block.

(UTM) is testing a

TANGENTIAL STRESS

• A force acting in a generally horizontal direction; *especially* : a force that produces mountain folding and over thrusting

BRITTLE BEHAVIOR

• A material is brittle if, when subjected to stress, it breaks without insignificant deformation.

• Is the change in the size or shape of a body due to the deforming force. Type equation here. Change in Dimension *Strain*=

Original dimension

• Strain is Dimensionless hence no unit

• i.e.

19ASB201 Aero Mechanics of Solids / NEHRU K /AP/AERO/SNSCT

TYPES OF STRAIN

- Since the deforming force can produce three of deformations (i.e. Change in length, or volume or shape) in a body, there are three types of strain;
 - i. Longitudinal strain
 - ii. Volumetric strain
 - iii. Shearing strain

LONGITUDINAL STRAIN

VOLUMETRIC STRAIN

• Is when the deforming force produces change in the volume.

Volumetric Strain =

Change in Volume

Original Volume

 ΔV V

SHEARING STRAIN

- Is when the deforming force produces change in the shape of the body.
- It is measured by the angle θ (in radian) through which a line originally perpendicular to the fixed face is turned due to the application of the tangential

S.NO	QUESTION	ANSWER
1	The ability to resist applied load is called	
2	The force required to produce unit deflection is called	
3	The materials having same properties in all directions are called	

