H250: Honors Colloquium - Introduction to Computation Resolution in Predicate Logic

Marius Minea
marius@cs.umass.edu

Review: Resolution in propositional logic

Resolution is an inference rule that produces a new clause from two clauses with complementary literals (p and $\neg p$).

$$
\frac{p \vee A \quad \neg p \vee B}{A \vee B} \quad \text { resolution }
$$

"From clauses $p \vee A$ and $\neg p \vee B$ we derive clause $A \vee B$ "
New clause $=$ resolvent of the two clauses with respect to p Example: $\quad \operatorname{res}_{p}(p \vee q \vee \neg r, \neg p \vee s)=q \vee \neg r \vee s$
Resolution is a valid inference rule: any assignment making premises true also makes conclusion true

$$
\{p \vee A, \neg p \vee B\} \models A \vee B
$$

Corollary: if $A \vee B$ is a contradiction, so is $(p \vee A) \wedge(\neg p \vee B)$ if resolution reaches contradiction, we started from a contradiction

Resolution For Predicates

In predicate logic, a literal is a (possibly negated) predicate: not p and $\neg p$, but $P(\arg 1)$ and $\neg P(\arg 2)$ (different args)

To derive a new clause from $A \vee P(\arg 1)$ and $B \vee \neg P(\arg 2)$ must bring args to common form.

Variables in clauses will be (implicitly) universally quantified can take any value \Rightarrow can substitute with any terms

Is there a substitution bringing the arguments to a common form?
Ex. 1: $\quad P(x, g(y))$ and $P(a, z)$
Ex. 2: $\quad P(x, g(y))$ and $P(z, a)$
Ex. 1: $x \mapsto a, z \mapsto g(y)$ yields $P(a, g(y)), P(a, g(y)) \Rightarrow$ same
Ex. 2: can't substitute constant a with $g(y)$ (a is not a variable) g is an arbitrary function, don't know if y exists with $g(y)=a$

Substitution and Term Unification

A substitution is a function that associates terms to variables

$$
\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}
$$

Two terms can be unified if there is a substitution that makes them equal
$f(x, g(y, z), t)\{x \mapsto h(z), y \mapsto h(b), t \mapsto u\}=f(h(z), g(h(b), z), u)$
Unification Rules
A variable x may be unified with any term t (substitution) if x does not occur in t (otherwise, we'd get an infinite term) can't unify: x with $f(h(y), g(x, z))$; but can trivially unify x with x

Two terms $f(\ldots)$ can be unified if they have the same function f and the arguments (terms) can be unified one by one
\Rightarrow two constants (0 -arg functions): unified if equal

Implementing Unification: Union-Find

Unification defines equivalence classes:
If we unify x with y and then y with $f(z, a)$, then x is also unified with $f(z, a) \Rightarrow$ equivalence

Must track equivalent variables.
Union-Find: data structure for building equivalence classes
Operations:
find(element): finds representative of equivalence class union(elem1, elem2): makes elements equivalent (will stay so)

Union-Find Example

One implementation: set of trees with links up to parent find: returns root of tree union: links one root to the other

find $(X)=\operatorname{find}(Y)=g(Z)$

We maintain a map of variables to terms.

Union-Find Example

Unify $f(x, g(x, s(z)), t)$ with $f(h(z), g(h(b), u), z)$
x with $h(z) \Rightarrow\{x \mapsto h(z)\}$
$g(x, s(z))$ with $g(h(b), u) \Rightarrow$ x with $h(b) \Rightarrow h(z)$ with $h(b) \Rightarrow\{x \mapsto h(z), z \mapsto b\}$ $s(z)$ with $u \Rightarrow\{x \mapsto h(z), z \mapsto b, u \mapsto s(z)\}$
t with $z \Rightarrow t$ with $b \Rightarrow\{x \mapsto f(z), z \mapsto b, u \mapsto s(z), t \mapsto b\}$
Substituting all the way:

$$
\{x \mapsto f(b), z \mapsto b, u \mapsto s(b), t \mapsto b\}
$$

This substitution is the most general unifier of the given terms.

Resolution in Predicate Logic

Take clauses A with $P(\ldots)$ (positive) and B, with $\neg P(\ldots)$ (negated)
A: $P(x, g(y)) \vee P(h(a), z) \vee Q(z) \quad B: \neg P(h(z), t) \vee R(t, z)$
Choose some $(\geq 1) P(\ldots)$ from A and some $\neg P(\ldots)$ from B
Rename common variables (A and B are independent clauses)
A: $P(x, g(y)) \vee P(h(a), z) \vee Q(z) \quad B: \neg P\left(h\left(z_{2}\right), t\right) \vee R\left(t, z_{2}\right)$
Unify all chosen $P(\ldots)$ from A and $\neg P(\ldots)$ from B

$$
\left\{P(x, g(y)), P(h(a), z), P\left(h\left(z_{2}\right), t\right)\right\} \quad x \mapsto h(a) ; z_{2} \mapsto a ; z, t \mapsto g(y)
$$

Eliminate chosen $P(\ldots)$ and $\neg P(\ldots)$ from $A \vee B$.
Apply resulting substitution and add new clause to list

$$
Q(g(y)) \vee R(g(y), a)
$$

Keep original clauses for unification with other predicates

Transforming the Formula for Resolution

We proceed similarly to CNF transformation, but with extra steps.

- rewrite $\rightarrow, \leftrightarrow$, etc., keep only \wedge, \vee, ,
- push negation inwards to predicates (negation normal form)
- rename to get unique variable names (we'll remove quantifiers) $\forall x P(x) \vee \forall x \exists y Q(x, y)$ becomes $\forall x P(x) \vee \forall z \exists y Q(z, y)$

Skolemization: Removing Existential Quantifiers

We want to only keep universally quantified variables, and make quantification implicit.
\Rightarrow use Instantiation for existential quantifiers
In $\forall x_{1} \ldots \forall x_{k} \exists y:(\ldots)$, the choice of y depends on $x_{1}, \ldots x_{k}$; introduce a new Skolem function $y=f\left(x_{1}, \ldots, x_{k}\right)$, eliminating y i.e., instantiate y with $f\left(x_{1}, \ldots, x_{k}\right)$

In particular $(k=0), \exists y$ outside any \forall is instantiated with a new Skolem constant

New function or constant names for each existential quantifier.

Transformation Steps (cont'd.)

- Bring all \forall quantifiers to the front (prenex normal form) $\forall x P(x) \wedge \forall y Q(y) \quad \leftrightarrow \quad \forall x \forall y(P(x) \wedge Q(y))$ $\forall x P(x) \vee \forall y Q(y) \quad \leftrightarrow \quad \forall x \forall y(P(x) \vee Q(y))$
- Remove all quantifiers (implicit universal quantification)
- Bring \wedge outside \vee (convert to clausal form)

A Resolution Exercise

https://www.cs.utexas.edu/users/novak/reso.html,
Exercise 9:
Every investor bought [something that is] stocks or bonds.
$A_{1}: \forall X(\operatorname{inv}(X) \rightarrow \exists Y(\operatorname{buy}(X, Y) \wedge(\operatorname{share}(Y) \vee \operatorname{bond}(Y))))$
If the Dow-Jones Average crashes, then all stocks that are not gold stocks fall.
$A_{2}:$ crash $\rightarrow \forall X(\operatorname{share}(X) \wedge \neg \operatorname{gold}(X) \rightarrow$ falls $(X))$
If the T-Bill interest rate rises, then all bonds fall.
$A_{3}:$ tbrise $\rightarrow \forall X($ bond $(X) \rightarrow$ falls $(X))$
Every investor who bought something that falls is not happy.
$A_{4}: \forall X(\operatorname{inv}(X) \rightarrow(\exists Y(\operatorname{buy}(X, Y) \wedge$ falls $(Y)) \rightarrow \neg$ happy $(X)))$

Resolution Example (cont'd.)

If the Dow-Jones Average crashes and the T-Bill interest rate rises, then any investor who is happy bought some gold stock.
C : crash \wedge tbrise \rightarrow
$\forall X(\operatorname{inv}(X) \wedge \operatorname{happy}(X) \rightarrow \exists Y(\operatorname{buy}(X, Y) \wedge \operatorname{share}(Y) \wedge \operatorname{gold}(Y)))$
We negate the conclusion before transforming quantifiers!
$\neg C: \neg($ crash \wedge tbrise \rightarrow
$\forall X(\operatorname{inv}(X) \wedge \operatorname{happy}(X) \rightarrow \exists Y(\operatorname{buy}(X, Y) \wedge \operatorname{share}(Y) \wedge \operatorname{gold}(Y))))$

Example in Negation Normal Form

$A_{1}: \forall X(\neg \operatorname{inv}(X) \vee \exists Y(\operatorname{buy}(X, Y) \wedge(\operatorname{share}(Y) \vee \operatorname{bond}(Y))))$
$A_{2}: \neg$ crash $\vee \forall X(\neg \operatorname{share}(X) \vee$ gold $(X) \vee$ falls $(X))$
$A_{3}: \neg$ tbrise $\vee \forall X(\neg$ bond $(X) \vee$ falls $(X))$
$A_{4}: \forall X(\neg \operatorname{inv}(X) \vee \forall Y(\neg$ buy $(X, Y) \vee \neg$ falls $(Y)) \vee \neg$ happy $(X))$
$\neg C:$ crash \wedge tbrise
$\exists X(\operatorname{inv}(X) \wedge \operatorname{happy}(X) \wedge \forall Y(\neg \operatorname{buy}(X, Y) \vee \neg \operatorname{share}(Y) \vee \neg \operatorname{gold}(Y)))$

Example: Skolemization

$A_{1}: \forall X(\neg \operatorname{inv}(X) \vee \exists Y(\operatorname{buy}(X, Y) \wedge(\operatorname{share}(Y) \vee \operatorname{bond}(Y))))$
Item Y bought depends on investor $X, Y=f(X)$
$\forall X(\neg \operatorname{inv}(X) \vee(\operatorname{buy}(X, f(X)) \wedge(\operatorname{share}(f(X)) \vee \operatorname{bond}(f(X)))))$
X in $\exists X(\ldots)$ becomes constant b
$\neg C:$ crash \wedge tbrise $\wedge \exists X(\operatorname{inv}(X) \wedge$ happy (X)

$$
\wedge \forall Y(\neg \operatorname{buy}(X, Y) \vee \neg \operatorname{share}(Y) \vee \neg \operatorname{gold}(Y)))
$$

crash \wedge tbrise $\wedge \operatorname{inv}(b) \wedge$ happy (b)
$\wedge \forall C(\neg$ buy $(b, Y) \vee \neg$ share $(Y) \vee \neg \operatorname{gold}(Y))$

Example: Eliminating Quantifiers

All remaining variables are arbitrary (implicit universal quantification)
$A_{1}: \neg \operatorname{inv}(X) \vee(\operatorname{buy}(X, f(X)) \wedge(\operatorname{share}(f(X)) \vee \operatorname{bond}(f(X))))$
$A_{2}: \neg$ crash $\vee \neg$ share $(X) \vee$ gold $(X) \vee$ falls (X)
$A_{3}: \neg$ tbrise $\vee \neg$ bond $(X) \vee$ falls (X)
$A_{4}: \neg \operatorname{inv}(X) \vee \neg \operatorname{buy}(X, Y) \vee \neg$ falls $(Y) \vee \neg$ happy (X)
$\neg C: c r a s h \wedge$ tbrise $\wedge \operatorname{inv}(b) \wedge$ happy (b) $\wedge(\neg$ buy $(b, Y) \vee \neg \operatorname{share}(Y) \vee \neg \operatorname{gold}(Y))$

Next: apply distributivity of \vee over \wedge and write clauses separately

Example: Clausal Form

(1) $\neg \operatorname{inv}(X) \vee \operatorname{buy}(X, f(X))$
(2) $\neg \operatorname{inv}(X) \vee \operatorname{share}(f(X)) \vee$ bond $(f(X)))$
(3) \neg crash $\vee \neg$ share $(X) \vee$ gold $(X) \vee$ falls (X)
(4) \neg tbrise $\vee \neg$ bond $(X) \vee$ falls (X)
(5) $\neg \operatorname{inv}(X) \vee \neg$ buy $(X, Y) \vee \neg$ falls $(Y) \vee \neg$ happy (X)
(6) crash
(7) tbrise
(8) $\operatorname{inv}(b)$
(9) happy (b)
(10) \neg buy $(b, Y) \vee \neg$ share $(Y) \vee \neg \operatorname{gold}(Y)$

Proof: Generating Resolvents

(1) $\neg \operatorname{inv}(X) \vee \operatorname{buy}(X, f(X))$
(2) $\neg i n v(X) \vee \operatorname{share}(f(X)) \vee$ bond $(f(X)))$
(3) \neg crash $\vee \neg$ share $(X) \vee$ gold $(X) \vee$ falls (X)
(4) \neg tbrise $\vee \neg$ bond $(X) \vee$ falls (X)
(5) \neg inv $(X) \vee \neg$ buy $(X, Y) \vee \neg$ falls $(Y) \vee \neg$ happy (X)
(6) crash
(7) tbrise
(8) $\operatorname{inv}(b)$
(9) happy (b)
(10) \neg buy $(b, Y) \vee \neg$ share $(Y) \vee \neg \operatorname{gold}(Y)$

Try to progressively eliminate predicates
(11) \neg share $(X) \vee$ gold $(X) \vee$ falls (X)
$(3,6)$
(12) \neg buy $(b, Y) \vee \neg$ share $(Y) \vee$ falls (Y)
(10, 11, $X=Y$)
(13) \neg bond $(X) \vee$ falls (X)
$(4,7)$

Deriving Empty Clause

(1) $\neg \operatorname{inv}(X) \vee \operatorname{buy}(X, f(X))$
(2) $\neg \operatorname{inv}(X) \vee \operatorname{share}(f(X)) \vee$ bond $(f(X)))$
(5) \neg inv $(X) \vee \neg$ buy $(X, Y) \vee \neg$ falls $(Y) \vee \neg$ happy (X)
(8) $\operatorname{inv}(b)$
(9) happy (b)
(12) \neg buy $(b, Y) \vee \neg$ share $(Y) \vee$ falls (Y)
(10, 11, $X=Y$)
(13) \neg bond $(Y) \vee$ falls $(Y) \quad$ rename for unification with (2)
(14) $\neg \operatorname{inv}(X) \vee \operatorname{share}(f(X)) \vee$ falls $(f(X))$
$(2,13, Y=X)$
(15) $\neg \operatorname{buy}(b, f(X)) \vee \neg \operatorname{inv}(X) \vee$ falls $(f(X))$
(12, 14, $Y=f(X)$)
(16) $\neg \operatorname{buy}(b, Y) \vee \neg$ falls $(Y) \vee \neg$ happy (b)
(17) \neg buy $(b, Y) \vee \neg$ falls (Y)
(5, 8, $X=b$)
$(9,16)$
(18) $\neg b u y(b, f(X)) \vee \neg \operatorname{inv}(X)$
(19) $\neg \operatorname{inv}(b)$
(20) \emptyset (proof by contradiction done)
(15, 17, $Y=f(X))$
$(1,18, X=b)$

Revisiting Resolution

We try to prove:

$$
A_{1} \wedge A_{2} \wedge \ldots \wedge A_{n} \rightarrow C
$$

by contradiction, negating the conclusion and showing

$$
A_{1} \wedge A_{2} \wedge \ldots \wedge A_{n} \wedge \neg C \quad \text { is a contradiction }
$$

We repeatedly generate new clauses (resolvents) by resolution with unification.

If we get the empty clause, the initial formula is unsatisfiable If we can't find new resolvents, the formula is satisfiable

Resolution in predicate logic is refutation-complete for any unsatisfiable formula, we'll get the empty clause but can't determine satisfiability of any formula
(there are formulas for which the procedure never stops)

