H250: Honors Colloquium – Introduction to Computation Resolution in Predicate Logic

> Marius Minea marius@cs.umass.edu

Review: Resolution in propositional logic

Resolution is an *inference rule* that produces a *new clause* from two clauses with *complementary literals* $(p \text{ and } \neg p)$.

$$\frac{p \lor A \quad \neg p \lor B}{A \lor B} \qquad resolution$$

"From clauses $p \lor A$ and $\neg p \lor B$ we derive clause $A \lor B$ "

New clause = *resolvent* of the two clauses with respect to *p* Example: $res_p(p \lor q \lor \neg r, \neg p \lor s) = q \lor \neg r \lor s$

Resolution is a valid inference rule:

any assignment making premises true also makes conclusion true $\{p \lor A, \neg p \lor B\} \models A \lor B$

Corollary: if $A \lor B$ is a contradiction, so is $(p \lor A) \land (\neg p \lor B)$ if resolution reaches contradiction, we started from a contradiction

Resolution For Predicates

In predicate logic, a *literal* is a (possibly negated) predicate: not p and $\neg p$, but P(arg1) and $\neg P(arg2)$ (different args)

To derive a new clause from $A \lor P(arg1)$ and $B \lor \neg P(arg2)$ must bring args to common form.

Variables in clauses will be (implicitly) universally quantified can take any value \Rightarrow can *substitute* with any *terms*

Is there a substitution bringing the arguments to a common form? Ex. 1: P(x, g(y)) and P(a, z)Ex. 2: P(x, g(y)) and P(z, a)

Ex. 1: $x \mapsto a, \ z \mapsto g(y)$ yields $P(a, g(y)), \ P(a, g(y)) \Rightarrow$ same

Ex. 2: can't substitute *constant* a with g(y) (a is not a variable) g is an arbitrary function, don't know if y exists with g(y) = a

Substitution and Term Unification

A substitution is a function that associates terms to variables $\{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$

Two terms can be *unified* if there is a substitution that makes them equal $f(x, g(y, z), t)\{x \mapsto h(z), y \mapsto h(b), t \mapsto u\} = f(h(z), g(h(b), z), u)$

Unification Rules

A variable x may be unified with any term t (substitution) if x does not occur in t (otherwise, we'd get an infinite term) can't unify: x with f(h(y), g(x, z)); but can trivially unify x with x

Two *terms* f(...) can be unified if they have the same function f and the *arguments* (terms) can be unified one by one

 \Rightarrow two *constants* (0-arg functions): unified if equal

Implementing Unification: Union-Find

Unification defines equivalence classes: If we unify x with y and then y with f(z, a), then x is also unified with $f(z, a) \Rightarrow equivalence$

Must track equivalent variables.

Union-Find: data structure for building equivalence classes

Operations: *find*(element): finds representative of equivalence class *union*(elem1, elem2): makes elements equivalent (will stay so)

Union-Find Example

One implementation: set of *trees* with links up to parent *find*: returns root of tree *union*: links one root to the other

We maintain a *map* of variables to *terms*.

Union-Find Example

Unify f(x, g(x, s(z)), t) with f(h(z), g(h(b), u), z) x with $h(z) \Rightarrow \{x \mapsto h(z)\}$ g(x, s(z)) with $g(h(b), u) \Rightarrow$ x with $h(b) \Rightarrow h(z)$ with $h(b) \Rightarrow \{x \mapsto h(z), z \mapsto b\}$ s(z) with $u \Rightarrow \{x \mapsto h(z), z \mapsto b, u \mapsto s(z)\}$ t with $z \Rightarrow t$ with $b \Rightarrow \{x \mapsto f(z), z \mapsto b, u \mapsto s(z), t \mapsto b\}$ Substituting all the way: $\{x \mapsto f(b), z \mapsto b, u \mapsto s(b), t \mapsto b\}$

This substitution is the most general unifier of the given terms.

Resolution in Predicate Logic

Take clauses A with P(...) (*positive*) and B, with $\neg P(...)$ (*negated*) A: $P(x,g(y)) \lor P(h(a),z) \lor Q(z)$ B: $\neg P(h(z),t) \lor R(t,z)$

Choose some (≥ 1) P(...) from A and some $\neg P(...)$ from B

Rename common variables (A and B are independent clauses) A: $P(x,g(y)) \lor P(h(a),z) \lor Q(z)$ B: $\neg P(h(z_2),t) \lor R(t,z_2)$

Unify all chosen P(...) from A and $\neg P(...)$ from B{ $P(x, g(y)), P(h(a), z), P(h(z_2), t)$ } $x \mapsto h(a); z_2 \mapsto a; z, t \mapsto g(y)$

Eliminate chosen P(...) and $\neg P(...)$ from $A \lor B$. *Apply* resulting substitution and *add* new clause to list $Q(g(y)) \lor R(g(y), a)$

Keep original clauses for unification with other predicates

Transforming the Formula for Resolution

We proceed similarly to CNF transformation, but with extra steps.

▶ rewrite \rightarrow , \leftrightarrow , etc., keep only \land , \lor ,, \neg

- push negation inwards to predicates (negation normal form)
- ▶ rename to get unique variable names (we'll remove quantifiers) $\forall x P(x) \lor \forall x \exists y Q(x, y)$ becomes $\forall x P(x) \lor \forall z \exists y Q(z, y)$

Skolemization: Removing Existential Quantifiers

We want to only keep universally quantified variables, and make quantification implicit.

 \Rightarrow use Instantiation for existential quantifiers

In $\forall x_1...\forall x_k \exists y : (...)$, the choice of y depends on $x_1, \ldots x_k$; introduce a new Skolem function $y = f(x_1, \ldots, x_k)$, eliminating yi.e., instantiate y with $f(x_1, \ldots, x_k)$

In particular(k = 0), $\exists y$ outside any \forall is instantiated with a new *Skolem constant*

New function or constant names for *each* existential quantifier.

Transformation Steps (cont'd.)

- ▶ Bring all \forall quantifiers to the front (prenex normal form) $\forall x P(x) \land \forall y Q(y) \iff \forall x \forall y (P(x) \land Q(y))$ $\forall x P(x) \lor \forall y Q(y) \iff \forall x \forall y (P(x) \lor Q(y))$
- Remove all quantifiers (implicit universal quantification)
- ▶ Bring ∧ outside ∨ (convert to clausal form)

A Resolution Exercise

https://www.cs.utexas.edu/users/novak/reso.html, Exercise 9:

Every investor bought [something that is] stocks or bonds. $A_1: \forall X(inv(X) \rightarrow \exists Y(buy(X, Y) \land (share(Y) \lor bond(Y))))$

If the Dow-Jones Average crashes, then all stocks that are not gold stocks fall.

$$A_2: \ \textit{crash} \rightarrow \forall \ \textit{X}(\textit{share}(X) \land \neg \textit{gold}(X) \rightarrow \textit{falls}(X))$$

If the T-Bill interest rate rises, then all bonds fall. A_3 : tbrise $\rightarrow \forall X(bond(X) \rightarrow falls(X))$

Every investor who bought something that falls is not happy. $A_4: \forall X(inv(X) \rightarrow (\exists Y(buy(X, Y) \land falls(Y)) \rightarrow \neg happy(X)))$ If the Dow-Jones Average crashes and the T-Bill interest rate rises, then any investor who is happy bought some gold stock. C: $crash \wedge tbrise \rightarrow$ $\forall X(inv(X) \wedge happy(X) \rightarrow \exists Y(buy(X, Y) \wedge share(Y) \wedge gold(Y)))$

We negate the conclusion *before* transforming quantifiers!

 $\neg C: \neg(crash \land tbrise \rightarrow \forall X(inv(X) \land happy(X) \rightarrow \exists Y(buy(X, Y) \land share(Y) \land gold(Y))))$

Example in Negation Normal Form

$$\begin{array}{l} A_{1}: \ \forall X(\neg inv(X) \lor \exists Y(buy(X,Y) \land (share(Y) \lor bond(Y)))) \\ A_{2}: \ \neg crash \lor \forall X(\neg share(X) \lor gold(X) \lor falls(X)) \\ A_{3}: \ \neg tbrise \lor \forall X(\neg bond(X) \lor falls(X)) \\ A_{4}: \ \forall X(\neg inv(X) \lor \forall Y(\neg buy(X,Y) \lor \neg falls(Y)) \lor \neg happy(X)) \\ \neg C: \ crash \land tbrise \land \\ \exists X(inv(X) \land happy(X) \land \forall Y(\neg buy(X,Y) \lor \neg share(Y) \lor \neg gold(Y))) \end{array}$$

Example: Skolemization

 $\begin{array}{l} A_1: \ \forall X(\neg inv(X) \lor \exists Y(buy(X,Y) \land (share(Y) \lor bond(Y)))) \\ \text{Item } Y \text{ bought depends on investor } X, \ Y = f(X) \\ \forall X(\neg inv(X) \lor (buy(X,f(X)) \land (share(f(X)) \lor bond(f(X))))) \end{array}$

$$\begin{array}{l}X \text{ in } \exists X(...) \text{ becomes constant } b\\ \neg C: \ \textit{crash} \land \textit{tbrise} \land \exists X(\textit{inv}(X) \land \textit{happy}(X) \\ \land \forall Y(\neg\textit{buy}(X,Y) \lor \neg\textit{share}(Y) \lor \neg\textit{gold}(Y)))\\ \textit{crash} \land \textit{tbrise} \land \textit{inv}(b) \land \textit{happy}(b) \\ \land \forall C(\neg\textit{buy}(b,Y) \lor \neg\textit{share}(Y) \lor \neg\textit{gold}(Y))\end{array}$$

Example: Eliminating Quantifiers

All remaining variables are arbitrary (implicit universal quantification) $A_1: \neg inv(X) \lor (buy(X, f(X)) \land (share(f(X)) \lor bond(f(X))))$ $A_2: \neg crash \lor \neg share(X) \lor gold(X) \lor falls(X)$ $A_3: \neg tbrise \lor \neg bond(X) \lor falls(X)$ $A_4: \neg inv(X) \lor \neg buy(X, Y) \lor \neg falls(Y) \lor \neg happy(X)$ $\neg C: crash \land tbrise \land inv(b) \land happy(b)$ $\land (\neg buy(b, Y) \lor \neg share(Y) \lor \neg gold(Y))$

Next: apply distributivity of \lor over \land and write clauses separately

Example: Clausal Form

$$(1) \neg inv(X) \lor buy(X, f(X))$$

$$(2) \neg inv(X) \lor share(f(X)) \lor bond(f(X)))$$

$$(3) \neg crash \lor \neg share(X) \lor gold(X) \lor falls(X)$$

$$(4) \neg tbrise \lor \neg bond(X) \lor falls(X)$$

$$(5) \neg inv(X) \lor \neg buy(X, Y) \lor \neg falls(Y) \lor \neg happy(X)$$

$$(6) crash$$

$$(7) tbrise$$

$$(8) inv(b)$$

$$(9) happy(b)$$

$$(10) \neg buy(b, Y) \lor \neg share(Y) \lor \neg gold(Y)$$

)

Proof: Generating Resolvents

$$(1) \neg inv(X) \lor buy(X, f(X))$$

$$(2) \neg inv(X) \lor share(f(X)) \lor bond(f(X)))$$

$$(3) \neg crash \lor \neg share(X) \lor gold(X) \lor falls(X)$$

$$(4) \neg tbrise \lor \neg bond(X) \lor falls(X)$$

$$(5) \neg inv(X) \lor \neg buy(X, Y) \lor \neg falls(Y) \lor \neg happy(X)$$

$$(6) crash$$

$$(7) tbrise$$

$$(8) inv(b)$$

$$(9) happy(b)$$

$$(10) \neg buy(b, Y) \lor \neg share(Y) \lor \neg gold(Y)$$
Try to progressively eliminate predicates

$$(11) \neg share(X) \lor gold(X) \lor falls(X)$$

$$(10, 11, X = Y)$$

$$(13) \neg bond(X) \lor falls(X)$$

$$(4, 7)$$

(3, 6)

(4, 7)

Deriving Empty Clause

Revisiting Resolution

We try to prove:

 $A_1 \wedge A_2 \wedge \ldots \wedge A_n \rightarrow C$

by contradiction, negating the conclusion and showing

 $A_1 \wedge A_2 \wedge ... \wedge A_n \wedge \neg C$ is a *contradiction* We repeatedly generate new clauses (*resolvents*) by resolution with unification.

If we get the *empty clause*, the initial formula is *unsatisfiable* If we *can't find new resolvents*, the formula is *satisfiable*

Resolution in predicate logic is *refutation-complete* for any unsatisfiable formula, we'll get the empty clause but can't determine satisfiability of *any* formula (there are formulas for which the procedure never stops)