
H250: Honors Colloquium – Introduction to Computation

Resolution in Predicate Logic

Marius Minea
marius@cs.umass.edu

mailto:marius@cs.umass.edu


Review: Resolution in propositional logic

Resolution is an inference rule that produces a new clause
from two clauses with complementary literals (p and ¬p).

p ∨ A ¬p ∨ B
A ∨ B resolution

“From clauses p ∨ A and ¬p ∨ B we derive clause A ∨ B”

New clause = resolvent of the two clauses with respect to p
Example: resp(p ∨ q ∨ ¬r ,¬p ∨ s) = q ∨ ¬r ∨ s

Resolution is a valid inference rule:
any assignment making premises true also makes conclusion true

{p ∨ A,¬p ∨ B} |= A ∨ B

Corollary: if A ∨ B is a contradiction, so is (p ∨ A) ∧ (¬p ∨ B)
if resolution reaches contradiction, we started from a contradiction



Resolution For Predicates

In predicate logic, a literal is a (possibly negated) predicate:
not p and ¬p, but P(arg1) and ¬P(arg2) (different args)

To derive a new clause from A ∨ P(arg1) and B ∨ ¬P(arg2) must
bring args to common form.

Variables in clauses will be (implicitly) universally quantified
can take any value ⇒can substitute with any terms

Is there a substitution bringing the arguments to a common form?
Ex. 1: P(x , g(y)) and P(a, z)
Ex. 2: P(x , g(y)) and P(z , a)

Ex. 1: x 7→ a, z 7→ g(y) yields P(a, g(y)), P(a, g(y)) ⇒ same

Ex. 2: can’t substitute constant a with g(y) (a is not a variable)
g is an arbitrary function, don’t know if y exists with g(y) = a



Substitution and Term Unification

A substitution is a function that associates terms to variables
{x1 7→ t1, . . . , xn 7→ tn}

Two terms can be unified if there is a substitution that makes
them equal
f (x , g(y , z), t){x 7→ h(z), y 7→ h(b), t 7→ u} = f (h(z), g(h(b), z), u)

Unification Rules
A variable x may be unified with any term t (substitution)
if x does not occur in t (otherwise, we’d get an infinite term)
can’t unify: x with f (h(y), g(x , z)); but can trivially unify x with x

Two terms f (...) can be unified if they have the same function f
and the arguments (terms) can be unified one by one

⇒ two constants (0-arg functions): unified if equal



Implementing Unification: Union-Find

Unification defines equivalence classes:
If we unify x with y and then y with f (z , a),
then x is also unified with f (z , a) ⇒ equivalence

Must track equivalent variables.

Union-Find: data structure for building equivalence classes

Operations:
find(element): finds representative of equivalence class
union(elem1, elem2): makes elements equivalent (will stay so)



Union-Find Example

One implementation: set of trees with links up to parent
find: returns root of tree
union: links one root to the other

X

Y

g(Z )

find(X ) = find(Y ) = g(Z )

X

Y

g(Z )

S

T

union(Y , S)
links find(S) with find(Y )

We maintain a map of variables to terms.



Union-Find Example

Unify f (x , g(x , s(z)), t) with f (h(z), g(h(b), u), z)

x with h(z) ⇒ {x 7→ h(z)}

g(x , s(z)) with g(h(b), u) ⇒
x with h(b) ⇒ h(z) with h(b) ⇒{x 7→ h(z), z 7→ b}
s(z) with u ⇒ {x 7→ h(z), z 7→ b, u 7→ s(z)}

t with z ⇒ t with b ⇒ {x 7→ f (z), z 7→ b, u 7→ s(z), t 7→ b}
Substituting all the way:
{x 7→ f (b), z 7→ b, u 7→ s(b), t 7→ b}

This substitution is the most general unifier of the given terms.



Resolution in Predicate Logic

Take clauses A with P(...) (positive) and B, with ¬P(...) (negated)
A: P(x , g(y)) ∨ P(h(a), z) ∨ Q(z) B: ¬P(h(z), t) ∨ R(t, z)

Choose some (≥1) P(...) from A and some ¬P(...) from B

Rename common variables (A and B are independent clauses)
A: P(x , g(y)) ∨ P(h(a), z) ∨ Q(z) B: ¬P(h(z2), t) ∨ R(t, z2)

Unify all chosen P(...) from A and ¬P(...) from B
{P(x , g(y)), P(h(a), z), P(h(z2), t)} x 7→ h(a); z2 7→ a; z , t 7→ g(y)

Eliminate chosen P(...) and ¬P(...) from A ∨ B.
Apply resulting substitution and add new clause to list

Q(g(y)) ∨ R(g(y), a)

Keep original clauses for unification with other predicates



Transforming the Formula for Resolution

We proceed similarly to CNF transformation, but with extra steps.
I rewrite →, ↔, etc., keep only ∧, ∨,, ¬
I push negation inwards to predicates (negation normal form)
I rename to get unique variable names (we’ll remove quantifiers)
∀x P(x) ∨ ∀x ∃y Q(x , y) becomes ∀x P(x) ∨ ∀z ∃y Q(z , y)



Skolemization: Removing Existential Quantifiers

We want to only keep universally quantified variables, and make
quantification implicit.
⇒ use Instantiation for existential quantifiers
In ∀x1...∀xk∃y : (...), the choice of y depends on x1, . . . xk ;
introduce a new Skolem function y = f (x1, . . . , xk), eliminating y
i.e., instantiate y with f (x1, . . . , xk)

In particular(k = 0), ∃y outside any ∀ is instantiated with a new
Skolem constant

New function or constant names for each existential quantifier.



Transformation Steps (cont’d.)

I Bring all ∀ quantifiers to the front (prenex normal form)
∀x P(x) ∧ ∀y Q(y) ↔ ∀x∀y (P(x) ∧ Q(y))
∀x P(x) ∨ ∀y Q(y) ↔ ∀x∀y (P(x) ∨ Q(y))

I Remove all quantifiers (implicit universal quantification)
I Bring ∧ outside ∨ (convert to clausal form)



A Resolution Exercise

https://www.cs.utexas.edu/users/novak/reso.html,
Exercise 9:

Every investor bought [something that is] stocks or bonds.
A1: ∀X (inv(X )→ ∃Y (buy(X , Y ) ∧ (share(Y ) ∨ bond(Y ))))
If the Dow-Jones Average crashes, then all stocks that are not gold
stocks fall.
A2: crash→ ∀X (share(X ) ∧ ¬gold(X )→ falls(X ))
If the T-Bill interest rate rises, then all bonds fall.
A3: tbrise → ∀X (bond(X )→ falls(X ))
Every investor who bought something that falls is not happy.
A4: ∀X (inv(X )→ (∃Y (buy(X , Y ) ∧ falls(Y ))→ ¬happy(X )))

https://www.cs.utexas.edu/users/novak/reso.html


Resolution Example (cont’d.)

If the Dow-Jones Average crashes and the T-Bill interest rate rises,
then any investor who is happy bought some gold stock.
C : crash ∧ tbrise →
∀X (inv(X ) ∧ happy(X )→ ∃Y (buy(X , Y ) ∧ share(Y ) ∧ gold(Y )))

We negate the conclusion before transforming quantifiers!

¬C : ¬(crash ∧ tbrise →
∀X (inv(X ) ∧ happy(X )→ ∃Y (buy(X , Y ) ∧ share(Y ) ∧ gold(Y ))))



Example in Negation Normal Form

A1: ∀X (¬inv(X ) ∨ ∃Y (buy(X , Y ) ∧ (share(Y ) ∨ bond(Y ))))

A2: ¬crash ∨ ∀X (¬share(X ) ∨ gold(X ) ∨ falls(X ))

A3: ¬tbrise ∨ ∀X (¬bond(X ) ∨ falls(X ))

A4: ∀X (¬inv(X ) ∨ ∀Y (¬buy(X , Y ) ∨ ¬falls(Y )) ∨ ¬happy(X ))

¬C : crash ∧ tbrise ∧
∃X (inv(X ) ∧ happy(X ) ∧ ∀Y (¬buy(X , Y ) ∨ ¬share(Y ) ∨ ¬gold(Y )))



Example: Skolemization

A1: ∀X (¬inv(X ) ∨ ∃Y (buy(X , Y ) ∧ (share(Y ) ∨ bond(Y ))))
Item Y bought depends on investor X , Y = f (X )
∀X (¬inv(X ) ∨ (buy(X , f (X )) ∧ (share(f (X )) ∨ bond(f (X )))))

X in ∃X (...) becomes constant b
¬C : crash ∧ tbrise ∧ ∃X (inv(X ) ∧ happy(X )

∧∀Y (¬buy(X , Y ) ∨ ¬share(Y ) ∨ ¬gold(Y )))
crash ∧ tbrise ∧ inv(b) ∧ happy(b)
∧∀C(¬buy(b, Y ) ∨ ¬share(Y ) ∨ ¬gold(Y ))



Example: Eliminating Quantifiers

All remaining variables are arbitrary (implicit universal
quantification)
A1: ¬inv(X ) ∨ (buy(X , f (X )) ∧ (share(f (X )) ∨ bond(f (X ))))

A2: ¬crash ∨ ¬share(X ) ∨ gold(X ) ∨ falls(X )

A3: ¬tbrise ∨ ¬bond(X ) ∨ falls(X )

A4: ¬inv(X ) ∨ ¬buy(X , Y ) ∨ ¬falls(Y ) ∨ ¬happy(X )

¬C : crash ∧ tbrise ∧ inv(b) ∧ happy(b)
∧(¬buy(b, Y ) ∨ ¬share(Y ) ∨ ¬gold(Y ))

Next: apply distributivity of ∨ over ∧ and write clauses separately



Example: Clausal Form

(1) ¬inv(X ) ∨ buy(X , f (X ))
(2) ¬inv(X ) ∨ share(f (X )) ∨ bond(f (X )))
(3) ¬crash ∨ ¬share(X ) ∨ gold(X ) ∨ falls(X )
(4) ¬tbrise ∨ ¬bond(X ) ∨ falls(X )
(5) ¬inv(X ) ∨ ¬buy(X , Y ) ∨ ¬falls(Y ) ∨ ¬happy(X )
(6) crash
(7) tbrise
(8) inv(b)
(9) happy(b)
(10) ¬buy(b, Y ) ∨ ¬share(Y ) ∨ ¬gold(Y )



Proof: Generating Resolvents
(1) ¬inv(X ) ∨ buy(X , f (X ))
(2) ¬inv(X ) ∨ share(f (X )) ∨ bond(f (X )))
(3) ¬crash ∨ ¬share(X ) ∨ gold(X ) ∨ falls(X )
(4) ¬tbrise ∨ ¬bond(X ) ∨ falls(X )
(5) ¬inv(X ) ∨ ¬buy(X , Y ) ∨ ¬falls(Y ) ∨ ¬happy(X )
(6) crash
(7) tbrise
(8) inv(b)
(9) happy(b)
(10) ¬buy(b, Y ) ∨ ¬share(Y ) ∨ ¬gold(Y )

Try to progressively eliminate predicates
(11) ¬share(X ) ∨ gold(X ) ∨ falls(X ) (3, 6)
(12) ¬buy(b, Y ) ∨ ¬share(Y ) ∨ falls(Y ) (10, 11, X =Y )
(13) ¬bond(X ) ∨ falls(X ) (4, 7)



Deriving Empty Clause
(1) ¬inv(X ) ∨ buy(X , f (X ))
(2) ¬inv(X ) ∨ share(f (X )) ∨ bond(f (X )))
(5) ¬inv(X ) ∨ ¬buy(X , Y ) ∨ ¬falls(Y ) ∨ ¬happy(X )
(8) inv(b)
(9) happy(b)
(12) ¬buy(b, Y ) ∨ ¬share(Y ) ∨ falls(Y ) (10, 11, X =Y )
(13) ¬bond(Y ) ∨ falls(Y ) rename for unification with (2)
(14) ¬inv(X ) ∨ share(f (X )) ∨ falls(f (X )) (2, 13, Y =X )
(15) ¬buy(b, f (X )) ∨ ¬inv(X ) ∨ falls(f (X )) (12, 14, Y = f (X ))
(16) ¬buy(b, Y ) ∨ ¬falls(Y ) ∨ ¬happy(b) (5, 8, X =b)
(17) ¬buy(b, Y ) ∨ ¬falls(Y ) (9, 16)
(18) ¬buy(b, f (X )) ∨ ¬inv(X ) (15, 17, Y = f (X ))
(19) ¬inv(b) (1, 18, X =b)
(20) ∅ (proof by contradiction done) (8, 19)



Revisiting Resolution

We try to prove:
A1 ∧ A2 ∧ ... ∧ An → C

by contradiction, negating the conclusion and showing
A1 ∧ A2 ∧ ... ∧ An ∧ ¬C is a contradiction

We repeatedly generate new clauses (resolvents) by resolution with
unification.

If we get the empty clause, the initial formula is unsatisfiable
If we can’t find new resolvents, the formula is satisfiable

Resolution in predicate logic is refutation-complete
for any unsatisfiable formula, we’ll get the empty clause
but can’t determine satisfiability of any formula

(there are formulas for which the procedure never stops)


