Inference in first-order logic

Chapter 9

Outline

- Reducing first-order inference to propositional inference
- Unification
- Generalized Modus Ponens
- Forward chaining
- Backward chaining
- Resolution

Universal instantiation (UI)

- Every instantiation of a universally quantified sentence is entailed by it:
-

for any variable v and ground term g

- E.g., $\forall x \operatorname{King}(x) \wedge \operatorname{Greed}(x) \Rightarrow \operatorname{Evil}(x)$ yields:

King(John) ^Greedy(John) \Rightarrow Evil(John)
King(Richard) \wedge Greedy (Richard) \Rightarrow Evil(Richard)

Existential instantiation (EI)

- For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$
\begin{gathered}
\exists v \alpha \\
\text { Subst(\{v/k\}, } \alpha)
\end{gathered}
$$

- E.g., $\exists x \operatorname{Crown}(x) \wedge$ OnHead(x,John) yields:
$\operatorname{Crown}\left(C_{1}\right) \wedge \operatorname{OnHead}\left(C_{1}\right.$, John $)$
provided C_{1} is a new constant symbol, called a Skolom conctant

Reduction to propositional inference

Suppose the KB contains just the following:

```
\forallx King(x) ^ Greedy(x) = Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)
```

- Instantiating the universal sentence in all possible ways, we have:

```
King(John) ^ Greedy(John) => Evil(John)
```

King(Richard) ^ Greedy(Richard) \Rightarrow Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

- The new KB is propositionalized: proposition symbols are

Reduction contd.

- Every FOL KB can be propositionalized so as to preserve entailment
-
- (A ground sentence is entailed by new KB iff entailed by original KB)
- Idea: propositionalize KB and query, apply resolution, return result
-
- Problem: with function symbols, there are infinitely many around torms

Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositionalized KB

Idea: For $n=0$ to ∞ do
create a propositional KB by instantiating with depth-\$n\$ terms see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is semidecidable (algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.)

Problems with propositionalization

- Propositionalization seems to generate lots of irrelevant sentences.
- E.g., from:
-
-

```
    \forallx King(x)^ Greedy(x) = Evil(x)
    King(John)
    \forally Greedy(y)
    Brother(Richard,John)
```

- it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy (Richard) that are irrelevant
- With $p k$-ary predicates and n constants, there are $p \cdot n^{k}$ instantiations.

Unification

- We can get the inference immediately if we can find a substitution θ such that King (x) and Greedy (x) match King(John) and Greedy(y)
-

$\theta=\{x / J o h n, y / J o h n\}$ works

$\cdot \operatorname{Unify}(\alpha, \beta)=$	θ if $\alpha \theta=\beta \theta$	
.		
p	q	θ
Knows(John, $x)$	Knows(John,Jane)	
Knows(John,x)	Knows(y,OJ)	
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,OJ)	

Unification

- We can get the inference immediately if we can find a substitution θ such that King (x) and Greedy (x) match King(John) and Greedy(y)
-

$\theta=\{x / J o h n, y / J o h n\}$ works

$\cdot \operatorname{Unify}(\alpha, \beta)=$	θ if $\alpha \theta=\beta \theta$	
.		
p	q	θ
Knows(John, $x)$	Knows(John,Jane)	$\{x /$ Jane $\}\}$
Knows(John,x)	Knows(y,OJ)	
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,OJ)	

Unification

- We can get the inference immediately if we can find a substitution θ such that King (x) and Greedy (x) match King(John) and Greedy(y)
-

$\theta=\{x / J o h n, y / J o h n\}$ works

$\cdot \quad$ Unify $(\alpha, \beta)=$	θ if $\alpha \theta=\beta \theta$	
.		θ
p	q	$\{x /$ Jane $\}\}$
Knows(John, $x)$	Knows(John,Jane)	Knows(y,OJ)
Knows(John,x)	$\{x / O J, y /$ John $\}$	
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,OJ)	

Unification

- We can get the inference immediately if we can find a substitution θ such that King (x) and Greedy (x) match King(John) and Greedy(y)
-

$\theta=\{x / J o h n, y / J o h n\}$ works

- Unify $(\alpha, \beta)=$	θ if $\alpha \theta=\beta \theta$	
.		θ
p	q	$\{x / J a n e\}\}$
Knows(John, $x)$	Knows(John,Jane)	Knows(y,OJ)
Knows(John, $)$	$\{x / O J, y / J o h n\}\}$	
Knows(John, $x)$	Knows(y,Mother(y))	$\{y / J o h n, x / M o t h e r(J o h n)\}\}$
Knows(John,x)	Knows(x,OJ)	

Unification

- We can get the inference immediately if we can find a substitution θ such that King (x) and Greedy (x) match King(John) and Greedy(y)
-

$\theta=\{x / J o h n, y / J o h n\}$ works

\cdot Unify $(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$		
.		θ
p	q	$\{x / J a n e\}\}$
Knows(John, $x)$	Knows(John,Jane)	Knows(y,OJ)
Knows(John,x)	$\{x / O J, y / J o h n\}\}$	
Knows(John,x)	Knows(y,Mother(y))	$\{y / J o h n, x / M o t h e r(J o h n)\}\}$
Knows(John,x)	Knows(x,OJ)	$\{$ fail $\}$

Unification

- To unify Knows(John,x) and Knows(y,z),

$$
\theta=\{y / J o h n, x / z\} \text { or } \theta=\{y / J o h n, x / J o h n, z / J o h n\}
$$

- The first unifier is more general than the second.
- There is a single most general unifier (MGU) that is unique up to renaming of variables.

MGU $=\{y / J o h n, x / z\}$

The unification algorithm

function $\operatorname{UNify}(x, y, \theta)$ returns a substitution to make x and y identical inputs: x, a variable, constant, list, or compound y, a variable, constant, list, or compound θ, the substitution built up so far
if $\theta=$ failure then return failure else if $x=y$ then return θ
else if $\operatorname{Variable}$? (x) then return $\operatorname{Unify}-\operatorname{Var}(x, y, \theta)$
else if $\operatorname{Variable}$? (y) then return $\operatorname{Unify}-\operatorname{Var}(y, x, \theta)$
else if Compound? (x) and Compound? (y) then
return $\operatorname{Unify}(\operatorname{Args}[x], \operatorname{Args}[y], \operatorname{Unify}(\operatorname{Op}[x], \operatorname{Op}[y], \theta))$
else if $\operatorname{List} ?(x)$ and List? (y) then
return $\operatorname{Unify}(\operatorname{Rest}[x], \operatorname{Rest}[y], \operatorname{Unify}(\operatorname{FiRst}[x], \operatorname{First}[y], \theta))$
else return failure

The unification algorithm

```
function UNIFY-VAR(var, x,0) returns a substitution
    inputs: var, a variable
    x, any expression
    0, the substitution built up so far
    if {var/val}}\in\in0\mathrm{ then return Unify (val, x, 
    else if {x/val}}\in0\mathrm{ then return UNIFY(var,val, }0
    else if OCCUR-CHECK?(var,x) then return failure
    else return add {var/x} to }
```


Generalized Modus Ponens (GMP)

$\frac{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}{ }^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{q \theta}$ where $p_{i}{ }^{\prime} \theta=p_{i} \theta$ for all i
$\mathrm{p}_{1}{ }^{\prime}$ is $\operatorname{King}(J o h n) \quad \mathrm{p}_{1}$ is $\operatorname{King}(x)$
$\mathrm{p}_{2}{ }^{\prime}$ is $\operatorname{Greed} y(y) \quad \mathrm{p}_{2}$ is $\operatorname{Greed}(x)$
θ is $\{\mathrm{x} / \mathrm{John}, \mathrm{y} / \mathrm{John}\} \quad \mathrm{q}$ is $\operatorname{Evil}(x)$
q θ is Evil(John)

- GMP used with KB of definite clauses (exactly one positive literal)
- All variables assumed universally quantified

Soundness of GMP

- Need to show that

$$
p_{1}^{\prime}, \ldots, p_{n}^{\prime},\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \neq q \theta
$$

provided that $p_{i}^{\prime} \theta=p_{i} \theta$ for all $/$

- Lemma: For any sentence p, we have $p=\mathrm{p} \theta$ by UI

1. $\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \vDash\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \theta=\left(p_{1} \theta \wedge \ldots \wedge p_{n} \theta \Rightarrow q \theta\right)$
2.
3. $p_{1}{ }^{\prime}, \backslash ; \ldots, \backslash ; p_{n}{ }^{\prime} \equiv p_{1}{ }^{\prime} \wedge \ldots \wedge p_{n}{ }^{\prime}=p_{1}{ }^{\prime} \theta \wedge \ldots \wedge p_{n}{ }^{\prime} \theta$
4. From 1 and $2, q \theta$ follows by ordinary Modus Ponens 4.

Example knowledge base

- The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
- Prove that Col. West is a criminal

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations: American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge$ Hostile $(z) \Rightarrow$ Criminal (x) Nono ... has some missiles, i.e., $\exists x$ Owns(Nono,x) \wedge Missile(x):

Owns(Nono, M_{1}) and $\operatorname{Missile}\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West
Missile (x) ^ Owns(Nono, x) \Rightarrow Sells(West, x, Nono)
Missiles are weapons:
Missile $(x) \Rightarrow$ Weapon (x)
An enemy of America counts as "hostile":
Enemy (x,America) \Rightarrow Hostile (x)
West, who is American ...
American(West)
The country Nono, an enemy of America ...
Enemy(Nono,America)

Forward chaining algorithm

function FOL-FC-ASk $(K B, \alpha)$ returns a substitution or false
repeat until new is empty
new $\leftarrow\}$
for each sentence r in $K B$ do

$$
\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \leftarrow \operatorname{STANDARDIZE-APART}(r)
$$

$$
\text { for each } \theta \text { such that }\left(p_{1} \wedge \ldots \wedge p_{n}\right) \theta=\left(p_{1}^{\prime} \wedge \ldots \wedge p_{n}^{\prime}\right) \theta
$$ for some $p_{1}^{\prime}, \ldots, p_{n}^{\prime}$ in $K B$

$$
q^{\prime} \leftarrow \operatorname{SUBST}(\theta, q)
$$

if q^{\prime} is not a renaming of a sentence already in $K B$ or new then do add q^{\prime} to new
$\phi \leftarrow \operatorname{UNIFY}\left(q^{\prime}, \alpha\right)$
if ϕ is not fail then return ϕ
add new to $K B$
return false

Forward chaining proof

Forward chaining proof

Forward chaining proof

Properties of forward chaining

- Sound and complete for first-order definite clauses
- Datalog = first-order definite clauses + no functions
- FC terminates for Datalog in finite number of iterations
- May not terminate in general if α is not entailed
- This is unavoidable: entailment with definite clauses is semidecidable

Efficiency of forward chaining

Incremental forward chaining: no need to match a rule on iteration k if a premise wasn't added on iteration $k-1$
\Rightarrow match each rule whose premise contains a newly added positive literal

Matching itself can be expensive:
Database indexing allows O(1) retrieval of known facts

- e.g., query $\operatorname{Missile}(x)$ retrieves $\operatorname{Missile}\left(M_{1}\right)$

Forward chaining is widely used in deductive databases

Hard matching example

$\operatorname{Diff}(w a, n t) \wedge \operatorname{Diff}(w a, s a) \wedge \operatorname{Diff}(n t, q) \wedge$ $\operatorname{Diff}(n t, s a) \wedge \operatorname{Diff}(q, n s w) \wedge \operatorname{Diff}(q, s a) \wedge$ $\operatorname{Diff}(n s w, v) \wedge \operatorname{Diff}(n s w, s a) \wedge \operatorname{Diff}(v, s a) \Rightarrow$ Colorable()

Diff(Red,Blue) Diff (Red,Green) Diff(Green,Red) Diff(Green,Blue) Diff(Blue,Red) Diff(Blue,Green)

- Colorable() is inferred iff the CSP has a solution
- CSPs include 3SAT as a special case, hence matching is NP-hard

Backward chaining algorithm

function FOL-BC-ASK $(K B$, goals, θ) returns a set of substitutions inputs: $K B$, a knowledge base goals, a list of conjuncts forming a query
θ, the current substitution, initially the empty substitution $\}$
local variables: ans, a set of substitutions, initially empty
if goals is empty then return $\{\theta\}$
$q^{\prime} \leftarrow \operatorname{SubSt}(\theta, \operatorname{First}($ goals $))$
for each r in $K B$ where $\operatorname{Standardize-Apart}(r)=\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)$
and $\theta^{\prime} \leftarrow \operatorname{Unify}\left(q, q^{\prime}\right)$ succeeds
ans $\leftarrow \operatorname{FOL}-\mathrm{BC}-\mathrm{Ask}\left(K B,\left[p_{1}, \ldots, p_{n} \mid \operatorname{Rest}(\right.\right.$ goals $\left.\left.)\right], \operatorname{Compose}\left(\theta, \theta^{\prime}\right)\right) \cup$ ans return ans
$\operatorname{SUBST}\left(\operatorname{COMPOSE}\left(\theta_{1}, \theta_{2}\right), \mathrm{p}\right)=\operatorname{SUBST}\left(\theta_{2}\right.$, $\operatorname{SUBST}\left(\theta_{1}, \mathrm{p}\right)$)

Backward chaining example

Criminal(West)

Backward chaining example

Properties of backward chaining

- Depth-first recursive proof search: space is linear in size of proof
- Incomplete due to infinite loops
$-\Rightarrow$ fix by checking current goal against every goal on stack
- Inefficient due to repeated subgoals (both success and failure)
$-\Rightarrow$ fix using caching of previous results (extra space)

Logic programming: Prolog

- Algorithm = Logic + Control
-
- Basis: backward chaining with Horn clauses + bells \& whistles Widely used in Europe, Japan (basis of 5th Generation project) Compilation techniques $\Rightarrow 60$ million LIPS
- Program = set of clauses = head :- literal ${ }_{1}$... literal ${ }_{n}$.

```
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
```

- Depth-first, left-to-right backward chaining
- Built-in predicates for arithmetic etc., e.g., X is $\mathrm{Y} * \mathrm{Z}+3$
- Built-in predicates that have side effects (e.g., input and output
-
- predicates, assert/retract predicates)
- Closed-world assumption ("negation as failure")

Prolog

- Appending two lists to produce a third:

```
append([],Y,Y).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).
```

- query: append (A, B, [1,2]) ?
- answers:

$$
\begin{array}{ll}
A=[] & B=[1,2] \\
A=[1] & B=[2] \\
A=[1,2] & B=[]
\end{array}
$$

Resolution: brief summary

- Full first-order version:

$$
\begin{aligned}
& \qquad \mathcal{l}_{1} \vee \cdots \vee \mathcal{K}_{k}, \quad m_{1} \vee \cdots \vee m_{n} \\
& \left(\mathcal{C}_{1} \vee \cdots \vee \mathcal{i}_{-1} \vee \mathcal{C}_{i+1} \vee \cdots \vee \mathcal{l}_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}\right) \theta \\
& \text { where } \operatorname{Unify}\left(\mathcal{f}_{\mathrm{i}}, \neg m_{j}\right)=\theta .
\end{aligned}
$$

- The two clauses are assumed to be standardized apart so that they share no variables.
\bullet
- For example,

$$
\begin{gathered}
\neg \operatorname{Rich}(x) \vee \operatorname{Unhappy}(x) \\
\operatorname{Rich}(\text { Ken }) \\
\text { Unhappy }(\text { Ken })
\end{gathered}
$$

Conversion to CNF

- Everyone who loves all animals is loved by someone:
$\forall \mathrm{x}[\forall \mathrm{y} \operatorname{Animal}(y) \Rightarrow \operatorname{Loves}(x, y)] \Rightarrow[\exists \mathrm{y} \operatorname{Loves}(y, x)]$
- 1. Eliminate biconditionals and implications
$\forall \mathrm{x}[\neg \forall \mathrm{y} \neg$ Animal $(y) \vee \operatorname{Loves}(x, y)] \vee[\exists \mathrm{y} \operatorname{Loves}(y, x)]$
- 2. Move \neg inwards: $\neg \forall x p \equiv \exists x \neg p, \neg \exists x p \equiv \forall x$ $\neg p$
$\forall x[\exists \mathrm{y} \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists \mathrm{y} \operatorname{Loves}(y, x)]$

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one
4.

$$
\forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists z \operatorname{Loves}(z, x)]
$$

4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:
$\forall x[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
5. Drop universal quantifiers:
6.
6.
$[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
6. Distribute \vee over \wedge :

Resolution proof: definite clauses

```
\negAmerican(x) \vee ᄀ Weapon(y) \vee ᄀ Sells(x,y,z) \vee ᄀHostile(z) \vee Criminal(x)
```


