Reg. No. :

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution, Affiliated to Anna University)

Coimbatore – 641 035.

Internal Assessment Examination -I Academic Year 2022-2023(Even)

Third Semester 19MAT203 - PROBABILITY AND RANDOM PROCESSES

(REGULATION 2019)

TIME: 1 1/2 HOURS

MAXIMUM MARKS: 50

ANSWER ALL QUESTIONS PART A — (5 x 2 = 10 Marks)

								СО	BL	
1.	A.R.V. X has the pro	bability f	unction					CO1	Rem	2
		Х	-2	-1	0	1				
		P(X)	0.4	k	0.2	0.3				
	Find k and the mean	value of 2	X							
2.	A Continuous R.V X that can assume any value between x=2 and x=5 had the								Арр	2
	p.d.f $f(x) = k(1+x)$. Find	d P(x<4).								
3.	If a R.V X has the MGF $M_X(t) = \frac{3}{3-t}$, Obtain the mean and variance of X.								Und	2
	The time (in hours) required to repair a machine is exponentially distributed							CO1	Rem	2
4.	with parameter $\lambda = \frac{1}{3}$. What is the probability that the repair time exceeds 3 hours ?									
	The joint p.d.f of a biva	CO2	Арр	2						
5.	$\mathbf{f}(\mathbf{x},\mathbf{y}) = \begin{cases} \mathbf{kxy}, 0 < \mathbf{x} < 1, 0 < \mathbf{y} < 1\\ 0, \text{otherwise} \end{cases}, \text{ find K.}$									

<u>PART B — (13+13+14=40 Marks)</u>

6.	(a)	(i)	A random variable <i>X</i> has the following probability distribution.	CO1	Арр	7
			X 0 1 2 3 4 5 6 7			
			$P(X) 0 k 2k 2k 3k k^2 2k^2 7k^2 + k$			
			Find			
			(1) The value of k (2) Evaluate P(X<6), P(0 <x<5)< td=""><td></td><td></td><td></td></x<5)<>			
			(3) The smallest value of a for which $P(X \le a) > \frac{1}{2}$.			
			(4) The Cumulative distribution function.			
		(ii)	A manufacturer of pins knows that 2% of his products are	CO1	Ana	6
			defective. If he sells pins in boxes of 100 and guarantees that not more than 4 pins will be defective what is the probability			
			that a box will fail to meet the guaranteed quality? $(e^{-2} =$			
			0.13534)			
			(OR)			

	(b)	(i)	A continuous	random	variał	ble $f(x)$	$() = \begin{cases} 2 \\ 0 \end{cases}$	x, 0	< x < 1 inerwise	s a C	01	App	6
			pdf and find i) $P\left(X < \frac{1}{2}\right)$,					
		(ii)	Derive the Moment and variable.	GF of P	oisson	distrib	ution a	nd hence	$\frac{4}{10}$ find its		01	Und	7
7.	(a)	(i)	A random var Find a) T	iable ha he mom	f(x) ent ge	$=\begin{cases} 2e^{-1}\\ 0 \\ 0 \end{cases}$	$x < \frac{x^{-2x}}{x}$	tion		C	01	App	7
		(ii)	The weekly w around a mean number of wo Rs.69 and Rs.	n of Rs.' orkers w	1000 v 70 wit hose w	workm h a S.D veekly	en are). of Rs wages	normally 5. Estin will be (i	nate the) between		01	Ana	6
						(OR)						
	(b)	(i)	The two dimentional random variable (X,Y) has joint probability mass function $f(x, y) = \frac{x+2y}{27}$, $x = 0,1,2$; $y = 0,1,2$. Find the conditional distribution of Y for X = x. Also find conditional distribution of Y given X = x.									Арр	6
		(ii)	 The joint probability function (X,Y) is given by P(x,y) = k(2x + 3y), x = 0,1,2; y = 1,2,3 i) Find the marginal distributions. ii) Find the probability distributions of (X+Y) iii) Find all conditional probability distributions. 									Арр	7
8.	(a)		Derive the MGF of Exponential distribution and hence find its mean and variance								01	App	14
			(OR)										
	(b)		From the following table for bivariate distribution of (X,Y) . Find i) $P(X \le 1)$ ii) $P(Y \le 3)$ iii) $P(X \le 1, Y \le 3)$ iv) $P(X \le 1/Y \le 3)$ v) $P(Y \le 3/X \le 1)$ vi) $P(X + Y \le 4)$ vii) Marginal distribution function of X & Y viii) Conditional distribution of X given Y=2 ix) Estimate X & Y are independent.									Ana	14
			X	1	2	3	4	5	6				
			0	0	0	$\frac{1}{32}$	$\frac{2}{32}$	$\frac{2}{32}$	$\frac{3}{32}$				
			1	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\begin{array}{c c} \frac{1}{8} \\ 2 \end{array}$				
			2	1	1	1	1	0					

Prepared by

Verified by

Dean(S&H)