\square

Internal Assessment Examination -I Academic Year 2022-2023(Even)
 Third Semester
 19MAT203 - PROBABILITY AND RANDOM PROCESSES (REGULATION 2019)

TIME: 1 1/2 HOURS
MAXIMUM MARKS: 50
ANSWER ALL QUESTIONS
PART A - ($5 \times 2=10$ Marks $)$

						CO	BL	
1.	A.R.V. X has the probability Find k and the mean value of	$\begin{array}{\|l\|} \hline \text { anctio } \\ \hline-2 \\ \hline 0.4 \\ \hline \end{array}$	-1 k	$\begin{array}{\|l\|} \hline 0 \\ \hline 0.2 \end{array}$	$\begin{array}{l\|} \hline 1 \\ \hline 0.3 \\ \hline \end{array}$	CO1	Rem	2
2.	A Continuous R.V X that can assume any value between $x=2$ and $x=5$ had the p.d.f $f(x)=k(1+x)$. Find $P(x<4)$.					CO1	App	2
3.	If a R.V X has the $\mathrm{MGF}_{\mathrm{X}}(\mathrm{t})=\frac{3}{3-t}$, Obtain the mean and variance of X .					CO1	Und	2
4.	The time (in hours) required to repair a machine is exponentially distributed with parameter $\lambda=\frac{1}{3}$. What is the probability that the repair time exceeds 3 hours?					CO1	Rem	2
5.	The joint p.d.f of a bivariate random variable (X, Y) is given by$f(x, y)=\left\{\begin{array}{l} k x y, 0<x<1,0<y<1 \\ 0, \\ \text { otherwise } \end{array}\right. \text {, find K. }$					CO2	App	2

PART B - (13+13+14=40 Marks)

6.1 (a)	(i)	A random variable X has the following probability distribution. $\begin{array}{ccccccccc} X & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ P(X) & 0 & k & 2 k & 2 k & 3 k & k^{2} & 2 k^{2} & 7 k^{2}+k \end{array}$ Find (1) The value of k (2) Evaluate $\mathrm{P}(\mathrm{X}<6), \mathrm{P}(0<\mathrm{X}<5)$ (3) The smallest value of a for which $P(X \leq a)>\frac{1}{2}$. (4) The Cumulative distribution function.	CO1	App	7
	(ii)	A manufacturer of pins knows that 2% of his products are defective. If he sells pins in boxes of 100 and guarantees that not more than 4 pins will be defective what is the probability that a box will fail to meet the guaranteed quality? $\left(e^{-2}=\right.$ 0.13534)	CO1	Ana	6

	(b)	(i)	A continuous random variable $f(x)=\left\{\begin{array}{cc}2 x, & 0<x<1 \\ 0, & \text { Otherwise }\end{array}\right.$ is a pdf and find i) $P\left(X<\frac{1}{2}\right)$ ii) $P\left(\frac{1}{4}<X<\frac{1}{2}\right)$ iii) $P\left(X>\frac{3}{4} / X>\frac{1}{2}\right)$.							CO1	App	6
		(ii)	Derive the MGF of Poisson distribution and hence find its mean and variance.							CO1	Und	7
7.	(a)	(i)	A random variable has the p.d.f given by $f(x)=\left\{\begin{array}{cc} 2 e^{-2 x} & x \geq 0 \\ 0 & x<0 \end{array}\right.$ Find a) The moment generating function b) First two moments about the origin.							CO1	App	7
		(ii)	The weekly wages of 1000 workmen are normally distributed around a mean of Rs. 70 with a S.D. of Rs.5. Estimate the number of workers whose weekly wages will be (i) between Rs. 69 and Rs. 72 (ii) less than Rs. 69 (iii) more than Rs. 72.							CO1	Ana	6
(OR)												
	(b)	(i)	The two dimentional random variable (X,Y) has joint probability mass function $f(x, y)=\frac{x+2 y}{27}, x=0,1,2 ; y=$ $0,1,2$. Find the conditional distribution of Y for $\mathrm{X}=\mathrm{x}$. Also find conditional distribution of Y given $X=x$.							CO2	App	6
		(ii)	The joint probability function (X, Y) is given by $P(x, y)=k(2 x+3 y), x=0,1,2 ; y=1,2,3$ i) Find the marginal distributions. ii) Find the probability distributions of $(\mathrm{X}+\mathrm{Y})$ iii) Find all conditional probability distributions.							CO2	App	7
8.	(a)		Derive the MGF of Exponential distribution and hence find its mean and variance							CO1	App	14
			(OR)									
	(b)		From the follo Find i) $P(X \leq 1)$ iv) $P(X \leq 1 / Y$ vii) Marginal d viii) Condition ix) Estimate X	$\begin{aligned} & \text { ving t } \\ & \text { ii) } P \\ & \text { } P 3 \text { 3 } \\ & \text { stribu } \\ & 1 \text { dist } \\ & \hline \text { Y a } \\ & \hline 1 \\ & \hline 0 \\ & \hline \frac{1}{16} \\ & \hline \frac{1}{32} \\ & \hline \end{aligned}$	ble for ve $P($ ion fio eutio 2 0 $\frac{1}{16}$ $\frac{1}{32}$	bivar ≤ 3 inion of X 3 $\frac{1}{32}$ $\frac{1}{8}$ $\frac{1}{64}$	$\begin{aligned} & \text { ate di } \\ & P\left(\begin{array}{l} P \\ \leq 1 \\ \text { of X } \\ \text { iven } \\ \text { t. } \\ \hline 4 \\ \hline 4 \\ \hline \frac{2}{32} \\ \hline \frac{1}{8} \\ \hline \frac{1}{64} \\ \hline \end{array}\right. \end{aligned}$	$1, Y$ i) $P(X$ 2 5 $\frac{2}{32}$ $\frac{1}{8}$ 0	$\begin{aligned} & (\mathrm{X}, \mathrm{Y}) . \\ & Y \leq 4) \\ & \hline 6 \\ & \hline \frac{3}{32} \\ & \hline \frac{1}{8} \\ & \hline \frac{2}{64} \\ & \hline \end{aligned}$	CO 2	Ana	14

Rem/und: Remember/Understand App:Apply Ana:Analyze Eva: Evaluate

