Reg. No. :

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution, Affiliated to Anna University) Coimbatore – 641 035.

Internal Assessment Examination -III Academic Year 2022-2023(Even) **Fourth Semester** 19MAT203 - PROBABILITY AND RANDOM PROCESSES (REGULATION 2019)

TIME: 1 1/2 HOURS

MAXIMUM MARKS: 50

ANSWER ALL QUESTIONS PART A — (5 x 2 = 10 Marks)

		CO	BL	
1.	Check whether the function $R_{XX}(\tau) = 36 + \frac{8}{1+4\tau^2}$ is a valid	CO4	Und	2
	Autocorrelation?	001		
2.	State power spectral density.	CO4	Rem	2
3.	Define time invariant system.	CO5	Rem	2
4.	Examine whether the system $Y(t) = t X(t)$ is linear.	CO5	Und	2
5.	Find the mean square value of the random process whose auto	CO5	Und	2
	correlation function is $\frac{A^2}{2}\cos(\omega\tau)$.			

<u>PART B — (13+13+14 = 40 Marks)</u>

6.	(a)	(i)	Find the power spectral density of a random binary	CO4	Арр	6	
			transmission process where auto correlation function is				
			$R(\tau) = \begin{cases} 1 - \frac{ \tau }{T}, & \tau \le T\\ 0, & Otherwise \end{cases}$				
		(ii)	The power spectral density function of a zero mean WSS	CO4	Ana	7	
			process {X(t)} is given by $S(\omega) = \begin{cases} 1 & \omega < \omega_0 \\ 0 & otherwise \end{cases}$.				
			Find the auto correlation function. Show that $X(t)$ and $X(t + t)$				
			$\frac{\pi}{\omega_0}$) are uncorrelated.				
(OR)							
	(b)		If the cross correlation of two processes $\{X(t)\}$ and $\{Y(t)\}$ is	CO4	Ana	13	
			$R_{XY}(t, t + \tau) = \frac{AB}{2} [sin\omega_0 \tau + cos(\omega_0(2t + \tau))]$ where				
			A,B, ω_0 are constants. Find the cross power spectrum.				
				1	1		
7.	(a)	(i)	Show that if the input $\{X(t)\}$ is a WSS process then the output	CO5	Арр	6	
			{Y(t)} is also a WSS process.				

7.	(a)	(ii)	A WSS process X(t) with $R_{XX}(\tau) = Ae^{-\alpha \tau }$ where A and a are	CO5	Арр	7		
			real constants is applied to the input of an linear time invariant					
			systems with $h(t) = e^{-bt}u(t)$ where b is a positive real					
			constant. Find the power spectral density of the output of the					
			system.					
(OR)								
	(b)		If $\{X(t)\}$ is a WSS process and if	CO5	Арр	13		
			$Y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$, then prove that					
			(i) $R_{XY}((\tau) = R_{XX}(\tau) * h(\tau)$					
			$(ii)R_{YY}((\tau) = R_{XY}(\tau) * h(-\tau)$					
			(iii) $S_{XY}(\omega) = S_{XX}(\omega) * H(\omega)$					
			(iv) $S_{YY}(\omega) = S_{XX}(\omega) * H(\omega) ^2$					
8.	(a)		State and prove Wiener-Khintchine theorem.	CO4	App	14		
			(OR)					
	(b)		X(t) is the input voltage to a circuit and $Y(t)$ is the output	CO5	Ana	14		
			voltage. {X(t)} is a stationary random process with $\mu_X = 0$ and					
			$R_{XX}(\tau) = e^{-\alpha \tau }$. Find μ_Y , $S_{YY}(\omega)$ and $R_{YY}(\tau)$, if the power					
			transfer function is $H(\omega) = \frac{R}{R+iL\omega}$.					

Rem/Und:Remember/Understand App: Apply Ana: Analyze Eva: Evaluate Cre: Create

Prepared by

Verified by

HoD/DEAN