

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

ECONOMIC IMPORTANCE AND CONTROL OF MICROBES

Dr.V.Savitha Associate Professor Department of CSE

Using Microbes for a Variety of Everyday Applications

Using Microbes for a Variety of Everyday Applications

Food Products

- Fermentation (anaerobic respiration)
- Lactic acid fermentation
 - Used to make cheese, yogurt, etc.
- Ethanol fermentation
 - Used to make beer and wine

2 x CO₂

2 x ethanol

Using Microbes for a Variety of Everyday Applications

Field Applications of Recombinant Microorganisms

- Ice-minus bacteria (remove ice protein producing genes from *P. syringae*)
- *P. fluorescens* containing the gene that codes for the bacterial toxin from *Bacillus thuringiensis (*kills insects) Bt toxin!

Using Microbes for a Variety of Everyday Applications

Therapeutic proteins

Recombinant insulin in bacteria

Using Microbes for a Variety of Everyday Applications

Using Microbes Against Other Microbes

- Antibiotics
- Act in a few key ways
 - Prevent replication
 - Kill directly
 - Damage cell wall or prevent its synthesis

First was a vaccine against smallpox (cowpox provides immunity)

- DPT-diphtheria, pertussis, and tetanus
- MMR –measles, mumps, and rubella
- OPV- oral polio vaccine (Sabin)

8/17/2023

Vaccines

A Primer on Antibodies

- Antigen- foreign substances that stimulate an immune response
- Types of leukocytes or white blood cells
 - B-lymphocytes: antibody-mediated immunity
 - T-lymphocytes: cellular immunity
 - Macrophages: "cell eating" (phagocytosis)

Vaccines

Mechanism of Antibody Action

10

How are vaccines made?

- They can be part of a pathogen (e.g. a toxin) or whole organism that is dead or alive but attenuated (doesn't cause disease)
 - Subunit (toxin) or another part of the pathogen
 - Attenuated (doesn't cause disease)
 - Inactivated (killed)

What about flu vaccines (why do we have to get a shot every year?)

Vaccines – provide immunity to infectious microorganisms

Chemically broken apart to gather antigens

SNSCT/CSE/Biology for Engineers/Dr.V.Savitha

Recombinant Vaccines

Recombinant Vaccines

A vaccine produced from a cloned gene

SNSCT/CSE/Biology for Engineers/Dr.V.Savitha

Recombinant Vaccines

DNA vaccines

 Direct injection of plasmid DNA containing genes encoding specific antigenic proteins

Bacterial and Viral Targets for Vaccines

Microbial Genomes

Microbial Genome Program (MGP) –the goal is to sequence the entire genomes of microorganisms that have potential applications in environmental biology, research, industry, and health

♦ Sequencing Strategies →

SNSCT/CSE/Biology for Engineers/Dr.V.Savitha

Microbial Genomes

Why study viral genomes?

 Decipher genes and their products so that agents that block attachment, block replication can be made

	Table 5.4 EXAMPLES OF MEDICALLY IMPORTANT VIRAL GENOMES THAT HAVE BEEN SEQUENCED		
	Virus	Human Disease or Illness	Year Sequenced
	Ebola virus	Ebola hemorrhagic fever	1993
	Hepatitis A virus	Hepatitis A	1987
	Hepatitis B virus	Hepatitis B	1984
	Hepatitis C virus	Hepatitis C	1990
	Herpes simplex virus, type I	Cold sores	1988
	Human immunodeficiency virus (HIV-1)	Acquired immunodeficiency syndrome (AIDS)	1985
	Human papillomavirus	Cervical cancer	1985
	Human poliovirus	Poliomyelitis	1981
	Human rhinovirus	Common cold	1984
	Severe acute respiratory coronavirus (SARS-Co 3)	ute respiratory coronavirus (SARS-CoහාSCTSණලළළළ අල්ලාල්දේ අහු syndrome (SARS)	
8/17/20	2@riola virus En	gineers/Dr.V.Savitha	1992

17

Copyright © 2009 Pearson Education, Inc.

Using Molecular Techniques to Identify Bacteria

RFLP

•

PCR and Real time PCR

8/17/2023

Molecular Diagnostics

Application: Molecular Epidemiology

 Pulse Net monitors disease outbreaks related to different strains of food-borne pathogens

PulseNet

SNSCT/CSE/Biology for Engineers/Dr.V.Savitha

- Microarrays for tracking contagious disease
 - PulseNet used to identify outbreaks

Copyright © 2009 Pearson Education, Inc.

Combating Bioterrorism

- The use of biological materials as weapons to harm humans or animals and plants we depend on for food
- Examples in History
 - Throwing plague infected dead bodies over the walls of their enemies

8/17/2023

Using Biotech Against Bioweapons

- Postal service x-raying packages
- Antibody tests in the field
- PCR tests in the field
- Protein Microarrays for detecting bioweapon pathogens

