Reg. No. :

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution, Affiliated to Anna University) Coimbatore – 641 035.

Internal Assessment Examination-II Academic Year 2022-2023(Even)

Fourth Semester

19MAT202 – STATISTICS ANDNUMERICAL METHODS

(REGULATION 2019)

(Common to AGRI, AUTO, FT & MECH)

TIME: 1 1/2 HOURS

MAXIMUM MARKS: 50

ANSWER ALL QUESTIONS

<u>PART A — (5 x 2 = 10 Marks)</u>

		СО	BL	
1.	Write any two uses of ANOVA.	CO2	Und	2
2.	Why 2×2 Latin Square is not possible?	CO2	Rem	2
3.	Distinguish between direct and iterative methods.	CO3	Und	2
4.	Gauss-Seidel method is better than Gauss-Jacobi method .Justify	CO3	Und	2
5.	Write the types of Iterative methods.	CO3	Und	2

<u>PART B — (13+13+14 = 40 Marks)</u>

6.	(a)		A Farmer wishes to test the effect of four different fertilizers A, B, C D on the yield of wheat. In order to eliminate sources of error due					Арр	13
			to variability in soil fertility he uses the fertilizers in Latin square						
			arrangement as in	ndicated in the fo	ollowing table, w	here the numbers			
			indicate the yield	indicate the yield in bushels per unit area.					
			A (18)	C (21)	D (25)	B (11)			
			D (22)	B (12)	A (15)	C (19)			
			B (15)	A (20)	C (23)	D (24)			
			C (22)	D (21)	B (10)	A (17)			
			Perform ANOV						
			between the fertilizers at α =5% LOS.						
	(OR)							-	
	(b)	(i)	$\begin{pmatrix} 2 & 2 & 3 \end{pmatrix}$			CO3	App	7	
			Find the inverse of the matrix $\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 5 \end{pmatrix}$ using Gauss Jordan						
			\1 3 5/						
			method.						
		(ii)	Solve using Gauss Elimination method:			CO3	App	6	
			28x + 4y - z = 32; x + 3y + 10 = 24; 2x + 17y + 4z = 35.						
			, i i i i i i i i i i i i i i i i i i i			2			
7.	(a)	(i)	Solve the equation $f(x) = x^3 - 6x + 4$ using Newton Raphson method.			CO3	Арр	7	

		(ii)	Solve using Gauss Jordan method:	CO3	Арр	6				
			x + 3y + 3z = 16; x + 4y + 3z = 18; x + 3y + 4z = 19.							
	(OR)									
	(b)		Obtain Newton iterative formula for finding 1/N, where N is a positive real number. Hence evaluate 1/26. Correct to 4 decimal places.	CO3	Арр	13				
8.	(a)	(i)	Analyze the following results of a Latin Square experiments:1231A (12)D (20)C (16)B (10)2D (18)A (14)B (11)C (14)3B (12)C (15)D (19)A (13)4C (16)B (11)A (15)D (20)The letters A,B,C,D denote the treatments and the figures in the brackets denote the observations.	CO2	Ana	14				
	(OR)									
	(b) Solve by Gauss Seidel and Gauss Jacobi method: 9x - y + 2z = 9; x + 10y - 2z = 15; 2x - 2y - 13z = -17			CO3	Ana	14				

Rem/Und: Remember/ Understand App: Apply Ana: Analyze Eva: Evaluate Cre: Create

Prepared by

Verified by

Dean(S&H)