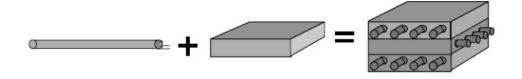


SNS COLLEGE OF TECHNOLOGY

1.1 WHAT ARE "COMPOSITES?

- Composite: Two or more chemically different constituents combined macroscopically to yield a
 useful material.
- Examples of naturally occurring composites permeated with holes filled with liquids
 - ➤ Wood: Cellulose fibers bound by lignin matrix
 - > Bone: Stiff mineral "fibers" in a soft organic matrix permeated with holes filled with liquids
 - > Granite: Granular composite of quartz, feldspar, and mica.
- A composite material is made by combining two or more materials— often ones that have very different properties.
- The two materials work together to give the composite unique properties.
- However, within the composite you can easily tell the different materials apart as they do not dissolve or blend into each other.
- Composite materials are materials made from two or more constituent materials with significantly different properties, that when combined, produce a material with characteristics different from the individual components.
- Composite materials consist of two or more chemically distinct constituent on a macro scale having a dispersed interface separating them and having bulk performance which is considerably different from those of any of its individual constituents.

Examples:- Cement, Concrete, Fiber-reinforced polymer, etc.


Some examples of man-made composites

- Concrete: Particulate composite of aggregates (limestone or granite), sand, cement and water
- Plywood: Several layers of wood veneer glued together
- Fiberglass: Plastic matrix reinforced by glass fibers
- Cemets: Ceramic and metal composites
- Fibrous composites: Variety of fibers (glass, kevlar, graphite, nylon, etc.) bound together by ε polymeric matrix

SNS COLLEGE OF TECHNOLOGY Composition of Composites

Matrix

High strength	Good shear properties	High strength
High stiffness	 Low density 	 High stiffness
 Low density 		 Good shear properties
		 Low density

1.2 THESE ARE NOT COMPOSITES:-

Fiber/Filament Reinforcement

- Plastics: Even though they may have several "fillers", their presence does not alter the
 physical properties significantly.
- Alloys: Here the alloy is not macroscopically heterogeneous, especially in terms of physical properties.
- Metals with impurities: The presence of impurities does not significantly alter physical properties of the metal.

Composite

SNS COLLEGE OF TECHNOLOGY

1.3 APPLICATION OF COMPOSITE MATERIALS:-

Automo	tive inc	lustry	: Lighter	, stronger,	wear	resistance,	rust-free,	aesthetics

- Car body Brake pads
- Drive shafts
- Fuel tanks
- Hoods
- Spoilers

Aerospace: Lighter, stronger, temperature resistance, smart structures, wear resistance

- Aircraft: Nose, doors, struts, trunnion, fairings, cowlings, ailerons, outboard and inboard flaps, stabilizers, elevators, rudders, fin tips, spoilers, edges
- Rockets & missiles: Nose, body, pressure tanks, frame, fuel tanks, turbo-motor stators, etc.

Sports: Lighter, stronger, toughness, better aesthetics, higher damping properties

- Tennis Bicycles
- Badminton
- Boats
- Hockey
- Golfing Motorcycles

Transportation & Infrastructure: Lighter, stronger, toughness, damping

- Railway coaches Bridges
- Ships and boats
- Dams
- Truck bodies and floors
- RV bodies
- Biomedical industry