

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 (An Autonomous Institution) Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF MECHANICAL ENGINEERING

16ME401 Finite Element Analysis

UNIT II One Dimensional Problems

A compound axial member is subjected to the loads shown in Fig. Given,

Calculate the following: (i) Nodal displacement (ii) Element strain (iii) Element stresses (iv) Support reaction, (v) Compare with exact solution, Using two bar elements model. FEAModel

Solution:

D DElement 1 2 3FNode

Number of elements = 2; and number of nodes = 3.

The stiffness matrix of each element is computed from

$$[K]^{(e)} = \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \cdot \qquad \begin{array}{c} A - Area & of the Element \\ E - youngs modulus of the \\ L - Length of the Element \end{array}$$

For element (1), the stiffness matrix is

$$\begin{bmatrix} K \end{bmatrix}^{(1)} = \underbrace{A_1 E_1}_{L_1} \Rightarrow \begin{bmatrix} K \end{bmatrix}^{(1)} = \frac{0.002 \times (50 \times 10^6)}{0.5} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} K \end{bmatrix}^{(1)} = 2 \times 10^5 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}.$$

SNSCT/ MECH/FEA/VII SEM/ Dr. M. SUBRAMANIAN /PROFESSOR / MECHANICAL ENGINEERING

For element (2), the stiffness matrix is

$$\begin{bmatrix} |\lambda|^{(2)} = A_2 E_2 \implies K \\ L_2 = [K]^{(2)} = \frac{0.001 \times (100 \times 10^6)}{1} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} |\lambda|^{(2)} = 10^5 \begin{bmatrix} 2 & 2 \\ 1 & -1 \\ -1 & 1 \end{bmatrix}^2 = \begin{bmatrix} K \end{bmatrix}^{(2)} = 1 \times 10^5 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}.$$

The final global matrices of stiffness, displacement, and load matrix, are obtained by combining the element matrices as

$$[K]^{G} = 10^{5} \begin{bmatrix} 2 & -2 & 0 \\ -2 & 2+1 & -1 \\ 0 & -1 & 1 \end{bmatrix}^{1}_{3} \{u\} = \begin{cases} u_{1} \\ u_{2} \\ u_{3} \end{cases}; \{F\} = \begin{cases} 0 \\ 300 \\ 500 \end{cases}$$

Applying the fixed boundary conditions at node 1 and applying the external forces at nodes 2 and 3, we have

$$10^{5} \begin{bmatrix} 2 & -2 & 0 \\ -2 & 2 + 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -0 \\ 2 \\ 3 \\ 0 \end{bmatrix} = \begin{cases} \mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{3} \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{5} \\ \mathbf{5} \\ \mathbf{5} \\ \mathbf{5} \end{bmatrix} .$$

Using the matrix partitioning to solve for u2 and u3, we have

$$10^{5} \begin{bmatrix} 3^{-1} - 1 \\ -1 & 1 \end{bmatrix} \begin{cases} u_{2} \\ u_{3} \\ u_{3} \end{cases} = \begin{cases} 300 \\ 500 \\ 500 \\ 0.009$$

,SNSCT/ MECH/FEA/VII SEM/ Dr. M. SUBRAMANIAN /PROFESSOR / MECHANICAL ENGINEERING Page 2 of 3

)i) Nodal Element Strein
Element⁽¹⁾
$$f_{1}^{(1)} = u_{2} - u_{1} = 0.004 - 0$$

Element⁽²⁾ $f_{2}^{(2)} = u_{3} - u_{2} = 0.009 - 0.004$
(iii) Element Stresses [Found by Hooke's law]
 $0^{(1)} = E_{1} \times f_{2}^{(1)} = 50 \times 10^{6} \times 0.008 = 4 \times 10^{5} \times 1/w^{2}$
 $0^{(2)} = E_{2} \times f_{2}^{(2)} = 100 \times 10^{6} \times 0.005 = 5 \times 10^{5} \times 1/w^{2}$
Theoretical Stress
 $0^{(1)} = P_{A_{1}} = \frac{800}{0.002} = 4 \times 10^{5} \times 1/w^{2}$
System of Equation
 $10^{5} \begin{bmatrix} 2 & -2 & 0 \\ -2 & 3 & -1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0.003 \end{bmatrix} = \begin{bmatrix} R_{1} \\ 300 \\ 500 \end{bmatrix}$
Using the first row of the global matrix to find R₁, we have
 (iv) Support reaction R_{1}
 $R_{1} = -2 \times 10^{5} \times 0.004 = -800 \text{ N}.$

Check for Equilibrium: Action Forces = - Reaction Forces

 $F_2 + F_3 = 300 + 500 = 800 \,\mathrm{N}$ $R_1 = -800 \,\mathrm{N}$.