

Department of Mechanical Engineering Kinematics of Machinery UNIT – II KINEMATICS OF LINKAGE MECHANISMS TOPIC-4 ACCELERATION DIAGRAM(AD)

V.S.Kaushik,

Prepared by

Assistant Professor / Mechanical Engineering, SNS College of Technology, Coimbatore.

SOURCE: QUORA

8/15/2023

SOURCE: QUORA

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

AD/19ME302/TOM/ KAUSHIK V S/MECH/SNSCT

ACCELERATION DIAGRAM

Acceleration Diagram for a Link.
Acceleration of a Point on a Link.
Acceleration in the Slider Crank Mechanism.
Corollas Component of Acceleration.

2/13

SOURCE: GRABCAD

ACCELERATION DIAGRAM FOR A LINK

- Consider two points A and B on a rigid link as shown in Figure 1.
- Let the point B moves with respect to A, with an angular velocity of rad/s and let rad/s2 be the angular acceleration of the link AB.

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

MOTION OF A LINK

velocity of any point on a link with respect to another point on the same link is always perpendicular to the line joining these points on the config<mark>uration</mark>

(or space) diagram.

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

ACCELERATION DIAGRAM FOR A LINK

MOTION OF POINTS ON A LINK

ACCELERATION DIAGRAM

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

ACCELERATION OF A POINT ON A LINK

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

ACCELERATION IN THE SLIDER CRANK MECHANISM

A slider crank mechanism is shown in Figure in slide number 9.
Let the crank OB makes an angle O with the inner dead centre (I.D.C) and rotates in a clockwise direction about the fixed point O with uniform

angular velocity WBO rad/s.

BOARD USAGE ALSO

ACCELERATION IN THE SLIDER CRANK MECHANISM

Velocity of B with respect to O or velocity of B (because O is a fixed point),

 $V_{BO} = V_{B} = \omega_{B} BO$, acting tangentially at B.

Note : A point at the end of a link which moves with constant angular velocity has no tangential component of acceleration.

SNS COLLEGE OF TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)

ACCELERATION IN THE SLIDER CRANK MECHANISM

SLIDER CRANK MECHANISM

ACCELERATION DIAGRAM

RUBBING VELOCITY AT A PIN JOINT

According to the definition, Rubbing velocity at the pin joint O = $(\omega 1 - \omega 2)$ r, if the links move in the same direction = $(\omega 1 + \omega 2)$ r, if the links move in the opposite direction

Rubbing velocity at the pin joint = ω .r where ω = Angular velocity of the turning member, and r = Radius of the pin.

BOARD USAG<mark>E ALSO</mark>

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) ASSESMENT QUESTIONS

1. The crank of a slider crank mechanism rotates clockwise at a constant speed of 300 r.p.m. The crank is 150 mm and the connecting rod is 600 mm long. Determine :

a. linear velocity and acceleration of the midpoint of the connecting rod, and

b. angular velocity and angular acceleration of the connecting rod, at a crank angle of 45° from inner dead centre position.

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

