SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) Department of Mechanical Engineering Kinematics of Machinery UNIT - II
 KINEMATICS OF LINKAGE MECHANISMS TOPIC-3 SLIDER CRANK MECHANISMS(SCM)

Berrrino

Prepared by
V.S.Kaushik,

Assistant Professor / Mechanical Engineering, SNS College of Technology, Coimbatore.

SLIDER CRANK MECHANISMS

Locate all the instantaneous centres of the slider crank mechanism as shown in Figure 1 slide number 3. The lengths of crank OB and connecting rod AB are 100 mm and 400 mm respectively. If the crank rotates clockwise with an angular velocity of $10 \mathrm{rad} / \mathrm{s}$, find: 1. Velocity of the slider A, and
2. Angular velocity of the connecting rod AB.

8/15/2023

CONSTRUCTION OF VELOCITY METHOD

FIGURE 1

SNS COLLEEE OF TECHNOLOGY
(AN AUTONOMOUS INSTITUTION)

MOTION OF A LINK

velocity of any point on a link with respect to another point on the same link is always perpendicular to the line joining these points on the configuration (or space) diagram.

MOTION OF A LINK

VELOCITY OF A POINT ON A LINK BY RELATIVE VELOCITY METHOD

VELOCITY DIAGRAM

SNS COLLEGE OF TECHNOLOGY
(AN AUTONOMOUS INSTITUTION)

VELOCITIES IN SLIDER CRANK MECHANISM

SOURCE: KHURMI R S

SLIDER CRANK MECHANISM

SNS COLLEGE OF TECHNOLOGY

 (AN AUTONOMOUS INSTITUTION)RUBBING VELOCITY AT A PIN JOINT

Given : $\omega_{\text {ob }}=10 \mathrm{rad} / \mathrm{s} ; \mathrm{OB}=100 \mathrm{~mm}=0.1 \mathrm{~m}$ We know that linear velocity of the crank OB ,
$\mathrm{V}_{\mathrm{OB}}=\mathrm{V}_{\mathrm{B}}=\omega_{\mathrm{OB}} \times \mathrm{OB}=10 \times 0.1=1 \mathrm{~m} / \mathrm{s}$

SOURCE: Khurmi R S

BOARD USAGE ALSO

The above picture shows a digging machine, Note : This picture is given as additional information and is not a direct example of the complete slides

RUBBING VELOCITY AT A PIN JOINT

Consider two links OA and OB connected by a pin joint at O as shown in Figure 1 in Slide Number-7.

Let $\omega 1=$ Angular velocity of the link OA or the angular velocity of the point A with respect to O .
$\omega 2$ = Angular velocity of the link OB or the angular velocity of the point B with respect to O , and
$\mathrm{r}=$ Radius of the pin.

RUBBING VELOCITY AT A PIN JOINT

According to the definition,
Rubbing velocity at the pin joint O
$=(\omega 1-\omega 2) \mathrm{r}$, if the links move in the same direction
$=(\omega 1+\omega 2) \mathrm{r}$, if the links move in the opposite direction
Rubbing velocity at the pin joint $=\omega . r$
where $\omega=$ Angular velocity of the turning member, and $r=$ Radius of the pin.

SNS COLLEGE OF TECHNOLOGY
 (AN AUTONOMOUS INSTITUTION) ASSESMENT OUESTIONS

1. In a Whitworth quick return motion mechanism, as shown in Figure 1 in slide number 12 , the dimensions of various links are as follows : $\mathrm{OQ}=100 \mathrm{~mm} ; \mathrm{OA}=200 \mathrm{~mm} ; \mathrm{BQ}=150 \mathrm{~mm}$ and $\mathrm{BP}=500 \mathrm{~mm}$. If the crank OA turns at 120 r.p.m. in clockwise direction and makes an angle of 120° with OQ ,
Find : 1. velocity of the block P, and 2 . angular velocity of the slotted link BQ.

SNS COLLEGE OF TECHNOLOGY
 (AN AUTONOMOUS INSTITUTION)

ASSESMENT OUESTIONS

FIGURE: 1

SNS COLLEGE OF TECHNOLOGY
 (AN AUTONOMOUS INSTITUTION)

