SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)
 Department of Mechanical Engineering 19MET302 - THEORY OF MACHINES UNIT - I
 BASICS OF MECHANISMS TOPIC-1 FUNDAMENTALS OF MECHANISM(FOM)

SOURCE: Khurmi R S

DIVISIONS OF DYNAMICS

KINEMATICS - Deals with Motion and Time
(Kinema - Greek Word - Motion)

KINETICS - Deals with Motion, Time and Forces.

Statics STRUCTURE

SOURCE: Rtskin
MACHINE

Kinematics
MECHANISM MACHINE

SOURCE: Chemol STRUCTURE

SNS COLLEGE OF TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)

LINK / ELEMENT

A single resistant body / combination of resistant bodies having relative motion with another resistant body / combination of resistant bodies.

SOLID LINK

FLEXIBLE LINK

FLUID LINK

SNS COLLEGE OF TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)

MACHINE

Each part of a machine, which moves relative to some other part, is known as a kinematic link (simply link) or element.

LATHE MACHINE

SNS COLLEGE OF TECHNOLOGY
(AN AUTONOMOUS INSTITUTION)

COMPONENTS OF MECHANISMS

Link / element

Kinematic pairs / joints

Kinematic chain

BUILDING TOP LOOPS

SNS COLLEGE OF TECHNOLOGY

 (AN AUTONOMOUS INSTITUTION)
KINEMATIC CHAIN

When the kinematic pairs are coupled in such a way that the last link is joined to the first link to transmit definite motion (i.e. completely or successfully constrained motion), it is called a kinematic chain.

$$
l=2 P-4
$$

$$
\text { Where, } l=\text { no of links }
$$

> P= no of Pairs
> $\mathbf{J}=\mathbf{3 / 2 l - 2}$
$\mathrm{J}=$ No of Joints

LAWN-MOVER- MACHINE

PROBLEMS ON ARRANGEMENT OF THREE LINKS

Consider the arrangement of three links AB, BC and CA with pin joints at A, B and C as shown in Figure. In this case,

Number of links, $1=3$
Number of pairs, $p=3$
Number of joints, $\mathrm{j}=3$

From equation (i), $1=2$ p-4
SOURCE: Khurmi R S
or $3=2 \times 3-4=2$
THREE BAR LINKS
L.H.S. > R.H.S. Locked chain

BOARD USAGE ALSO

PROBLEMS ON ARRANGEMENT OF FOUR LINKS

Consider the arrangement of four links $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA as shown in Figure. In this case
$l=4, \mathrm{p}=4$, and $\mathrm{j}=4$
From equation (i), $l=2 \mathrm{p}-4$
$4=2 \times 4-4=4$
i.e. L.H.S. = R.H.S.

FOUR BAR LINKS

BOARD USAGE ALSO

SNS COLLEGE OF TECHNOLOGY
(AN AUTONOMOUS INSTITUTION)

PROBLEMS ON ARRANGEMENT OF FIVE LINKS

Consider an arrangement of five links, as shown in Figure. In this case,
$l=5, \mathrm{p}=5$, and $\mathrm{j}=5$
From equation (i),
$l=2 \mathrm{p}-4$ or $5=2 \times 5-4=6$
i.e. L.H.S. < R.H.S.

L.H.S. < R.H.S. unconstrained chain

SOURCE: Khurmi R S

FIVE BAR LINKS

BOARD USAGE ALSO

PROBLEMS ON ARRANGEMENT OF SIX LINKS

Consider an arrangement of six links, as shown in Figure. This chain is formed by adding two more links in such a way that these two links form a pair with the existing links as well as form themselves a pair. In this case, $l=6, \mathrm{p}=5$, and $\mathrm{j}=7$
From equation (i),

$$
\begin{aligned}
& l=2 \mathrm{p}-4 \text { or } 6=2 \times 5-4=6 \\
& \text { i.e. } \text { L.H.S. }=\boldsymbol{R} . \boldsymbol{H} . S . \text { kinematic chain }
\end{aligned}
$$

BOARD USAGE ALSO

SNS COLLEGE OF TECHNOLOGY
 (AN AUTONOMOUS INSTITUTION) ASSESMENT OUESTIONS

 Multiple Choice Questions

 Multiple Choice Questions}

1. The coefficient of restitution for inelastic bodies is
(a) zero
(b) between zero and one
(c) one
(d) more than one
2. In a reciprocating steam engine, which of the following is a kinematic link ?
$\begin{array}{ll}\text { (a) cylinder and piston } & \text { (b) piston rod and connecting rod }\end{array}$
(c) crank shaft and flywheel (d) flywheel and engine frame
3. The relation between the number of pairs (p) forming a kinematic chain and the number of links (1) is
(a) $l=2 \mathrm{p}-2$
(b) $l=2 \mathrm{p}-3$
(c) $l=2 \mathrm{p}-4$
(d) $l=2 \mathrm{p}-5$

SNS COLLEGE OF TECHNOLOGY

 (AN AUTONOMOUS INSTITUTION)
ASSESMENT OUESTIONS

TWO MARKS OUESTIONS

1. Find out the links arrangement and at what constraint does the below Figure is

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

