

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

19EEB102 / ELECTRIC CIRCUIT ANALYSIS I YEAR / II SEMESTER UNIT-V: TRANSIENT CIRCUITS

RC, RLC TRANSIENT FOR DC INPUT

TOPIC OUTLINE

- ■RC Transient
- ■RLC Transient

Follow these basic steps to analyze a circuit using Laplace techniques:

- Develop the differential equation in the timedomain using Kirchhoff's laws and element equations.
- Apply the Laplace transformation of the differential equation to put the equation in the s-domain.
- Algebraically solve for the solution, or response transform.
- Apply the inverse Laplace transformation to produce the solution to the original differential equation described in the time-domain.

Transient Analysis of series RC Circuit (Differential Approach)

Consider a series RC circuit as shown in Fig. 10.124. The switch is closed at time t = 0. The capacitor is initially uncharged. Applying KCL to the circuit for t > 0,

$$\frac{V - V_s}{R} = -C \frac{dv}{dt}$$

$$\frac{-1}{RC}.dt = \frac{1}{V - V_s}dv$$

Integrating both sides =>
$$\frac{-1}{RC} \int_{0}^{t} (1)dt = \int_{0}^{V(t)} \frac{1}{V - V_{s}} dv$$

$$\frac{-1}{RC} \left[t - 0 \right] = \ln \left(V - V_s \right) \Big|_0^{V(t)}$$

$$\frac{-t}{RC} = \ln[V(t) - V_s] - \ln[-V_s]$$

$$\frac{V}{R} \downarrow 0$$

$$= \ln\left[\frac{V(t) - V_s}{-V_s}\right] = \ln\left[\frac{V_s - V(t)}{V_s}\right]$$

$$\frac{V_s - V(t)}{V_s} = e^{-t/RC}$$

$$V_{s} - V(t) = V_{s}e^{-t/RC}$$

$$V(t) = V_s [1 - e^{-t/RC}]$$

$$i = \frac{V_{S}}{R}e^{-\frac{1}{RC}t} \quad \text{for } t > 0$$

Transient Analysis of series RC Circuit (Laplace Approach)

Consider a series RC circuit as shown in Fig. 10.124. The switch is closed at time t = 0. The capacitor is initially uncharged. Applying KCL to the circuit for t > 0,

$$\frac{V - V_S}{R} = -C \frac{dv}{dt}$$

$$V - V_S = -RC \frac{dv}{dt}$$

Applying Laplace =>
$$V(S) - \frac{V_S}{S} = -RC[SV(S)]$$

 $V(S)[1 + SCR] = \frac{V_S}{S}$

$$V(S) = \frac{V_S}{S(1+SCR)} = \frac{V_S}{RC} \frac{1}{S(S+\frac{1}{RC})}$$

$$= \left[\frac{1}{S} - \frac{1}{S + \frac{1}{RC}}\right]$$
$$= V_S \left[\frac{1}{S} - \frac{1}{S + \frac{1}{RC}}\right]$$

$$=V_{S}\left[\frac{1}{S}-\frac{1}{S+\frac{1}{RC}}\right]$$

$$V(t) = V_s [1 - e^{-t/RC}]$$

$$i = \frac{V}{R}e^{-\frac{1}{RC}t} \quad \text{for } t > 0$$

Transient Analysis of series RLC Circuit (Differential Approach)

Equation of RLC Circuit

Consider a **RLC** circuit having resistor R, inductor L, and capacitor C connected in series and are driven by a voltage source V. Let Q be the charge on the capacitor and the current flowing in the circuit is I. Apply Kirchhoff's voltage law

$$L.I'(t) + Q.I(t) + \frac{1}{C}Q(t) = V(t)$$

In this equation; resistance, inductance, capacitance and voltage are known quantities but current and charge are unknown quantities. We know that an current is a rate of electric charge flowing, so it is given by

$$\frac{dQ}{dt}(t) = I(t) \text{ or } I(t) = Q(t)$$

Differentiating again I'(t) = Q''(t)

$$L.Q''(t) + R.Q'(t) + \frac{1}{C} = V(t)$$

Differentiating the above equation with respect to 't' we get,

$$L.I''(t) + Q.I'(t) + \frac{1}{C}I(t) = V'(t)$$

Now at time t=0, V(0)=0 and at time t=t, $V(t)=E_0 sin\omega t$

Differentiating with respect to 't' we get $V'(t) = \omega E_o cos \omega t$

Substitute the value of V'(t) in above equation

$$L.I''(t) + R.I'(t) + \frac{1}{C}I(t) = \omega E_o \cos \omega t$$

Let us say that the solution of this equation is $I_p(t) = Asin(\omega t - \phi)$ and if $I_p(t)$ is a solution of above equation then it must satisfy this equation,

$$L.I_P(t) + R.I_P(t) + \frac{1}{C}I_P(t) = \omega E_o \cos \omega t$$

$$-L\omega 2A\sin(\omega t-\phi)+R\omega A\cos(\omega t-\phi)+rac{1}{C}A\sin(\omega t-\phi)=\omega E_o\cos\omega t$$

$$-L\omega 2A\sin(\omega t-\phi)+R\omega A\cos(\omega t-\phi)rac{1}{C}A\sin(\omega t-\phi)=\omega E_o\cos(\omega t-\phi+\phi)$$

Apply the formula of $\cos (A + B)$ and combine similar terms we get,

$$\left(\frac{1}{C} - L\omega^2\right) A \sin(\omega t - \phi) + R\omega A \cos(\omega t - \phi)$$
$$= \omega E_o \cos \phi \cos(\omega t - \phi) - \omega E_o \sin \phi \cos(\omega t - \phi)$$

Match the coefficient of $sin(\omega t - \phi)$ and $cos(\omega t - \phi)$ on both sides we get,

$$\left(-rac{1}{C}+2L\omega
ight)A=\omega E_{\pmb{\sigma}}\sin\phi\;and\;R\omega A=\omega E_{\pmb{\sigma}}\cos\phi$$

Now we have two equations and two unknowns i.e ϕ and A, and by dividing the above two equations we get,

$$\tan \phi = \frac{-\frac{1}{C} + 2L\omega}{R_{col}}$$

Squaring and adding above equation, we get

$$A\sqrt{\left(-\frac{1}{C} + 2L\omega\right)^2 + (R\omega)^2} = \omega E_o$$

or
$$A = \frac{\omega E_o}{\sqrt{\left(-\frac{1}{C} + 2L\omega\right)^2 + (R\omega)^2}}$$

Analysis of RLC Circuit Using Laplace Transformation

Step 1: Draw a phasor diagram for given circuit.

- Step 2: Use Kirchhoff's voltage law in RLC series circuit and current law in RLC parallel circuit to form differential equations in the time-domain.
- **Step 3 :** Use Laplace transformation to convert these differential equations from time-domain into the s-domain.
- **Step 4:** For finding unknown variables, solve these equations.
- **Step 5**: Apply inverse Laplace transformation to convert back equations from s-domain into time domain.

...THANK YOU