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Follow these basic steps to analyze a circuit using Laplace

techniques:

n Develop the differential equation in the time-
domain using Kirchhoff's laws and element
equations.

n Apply the Laplace transformation of the
differential equation to put the equation in the s-
domain.

a Algebraically solve for the solution, or response
transform.

n Apply the inverse Laplace transformation to
produce the solution to the original differential
equation described in the time-domain.



Transient Analysis of series RC Circuit
(Differential Approach )

Consider a series RC circuit as shown in Fig. 10.124. The switch
is closed at time #= 0. The capacitor is 1nitially uncharged.
Applying KCL to the circuit for 7> 0
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Integrating both sides => W-([ (1)dt = YARY dv
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Transient Analysis of series RC Circuit
(Laplace Approach )

Consider a series RC circuit as shown in Fig. 10.124. The switch
is closed at time #= 0. The capacitor is 1nitially uncharged.
Applying KCL to the circuit for 7> 0,

vV
R
V — IT/'S dv J&: ANN—8—

- —C — Vs
R dt Voo ,D —cC
it

V-V, =-RC ﬁ
dt
. Ve
Applying Laplace => V' (S) — ? = —RC[SV(S)]
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Transient Analysis of series RLC Circuit
(Differential Approach )

Equation of RLC Circuit
Consider a RLC circuit having resistor R, inductor L, and capacitor C connected in
series and are driven by a voltage source V. Let Q be the charge on the capacitor

and the current flowing in the circuit is I. Apply Kirchhoff's voltage law
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In this equation; resistance, inductance, capacitance and voltage are known
quantities but current and charge are unknown quantities. We know that an current

is a rate of electric charge flowing, so it is given by



4Q,
E(1‘) = I{t) or I{t) = Q(t)

Differentiating again I'(t) = Q" (t)
L¢m+ﬂqm+%=vm

Differentiating the above equation with respect to 't" we get,
LI"t) + QI+ I(f) Vi)

Now at timet =0, V(0) =0and attime t = t, V(t) = E sinwt
Differentiating with respect to 't" we get V'(t) = wE,coswt
Substitute the value of V'(t) in above equation

L) + BRI )+(1_,f()_wsﬂcwt

Let us say that the solution of this equation is Ip{t) = Asin{wt - g) and if Ip(t) is a
solution of above equation then it must satisfy this equation,

|
L.Ip(H)+ R.Ip(f)+ Efp{t) = wF,coswt



— Lw2Asinlwt — 9} + RwAcos(wt — 3) + %A sin(wt — ¢) = wk, coswt
— Lw2Asin(wt — 9} + Ruw.A coslwt — &) %A sin{wt —0) = wE, cos{wt — @+ @)

Apply the formula of cos (A + B) and combine similar terms we get,

1
(E — Lu.:?) Asin{wt — 9) + RwAcos(wt — 6)

= wE, cosd cos(wt — ) — wE, sin ¢ cos(wt — ¢)

Match the coefficient of sin{wt - ©) and cos{wt - @) on both sides we get,

]
(— - + 2Lw) A=wkysineg and Rwd = wk,cos0

Now we have two equations and two unknowns i.e ¢ and A, and by dividing the
above two equations we get,
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Squaring and adding above equation, we get
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Analysis of RLC Circuit Using Laplace Transformation

Step 1 : Draw a phasor diagram for given circuit.

Step 2 : Use Kirchhoff's voltage law in RLC series circuit and current law in RLC
parallel circuit to form differential equations in the time-domain.

Step 3 : Use Laplace transformation to convert these differential equations from
time-domain into the s-domain.

Step 4 : For finding unknown variables, solve these equations.

Step 5 : Apply inverse Laplace transformation to convert back equations from s-
domain into time domain.
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