Reg. No. :

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution, Affiliated to Anna University) Coimbatore - 641 035.

CO4

13

App

Internal Assessment - III Academic Year 2022-2023(Even) **Fourth Semester** 19MAT202 - STATISTICS & NUMERICAL METHODS (REGULATION 2019) (Common to Agri, Auto, FT & Mech)

TIME: 1 1/2 HOURS

MAXIMUM MARKS: 50

ANSWER ALL QUESTIONS PART A — $(5 \times 2 = 10 \text{ Marks})$

		CO	BL	
1.	Write the Lagrange's inverse interpolation formula.	CO4	Rem	2
2.	When Newton's backward interpolation formula is used?	CO4	Und	2
3.	State the error in Trapezoidal rule.	CO4	Rem	2
4.	Using Euler's method find the solution of the initial value problem $y' = \log(x+y)$, $y(0) = 2$ at $x = 0.2$ by assuming $h = 0.2$.	CO5	Und	2
5.	Write down the third order Runge-Kutta method formula.	CO5	Rem	2

<u>PART B — (13+13+14 = 40 Marks)</u>

6. (a) i) The population of the town is as follows: Estimate the population increase during the year 1946 and 1986

24

x:

v:

20

population increase during the year 1940 and 1980.									
1941	1951	1961	1971	1981	1991				

36

46

51

(**OR**)

29

- (b) i) Dividing the range into 10 equal parts, find the value of CO4 App 13 $\int_{0}^{\pi/2} sinx \ dx \ by (i) \ Trapezoidal \ rule (ii) \ Simpson's \ rule.$
- (a) i) Using Taylor Series expansion, compute y (1.1) given y' = x + y, CO5 7. 6 App y(1) = 0
 - ii) Using modified Euler's method compute y (0.1) with h= 0.1 from CO5 App 7 $y' = y - \frac{2x}{y}, y(0) = 1.$

(b) Given that $y' = x - y^2$, $0 \le x \le 1$, y(0) = 0, y(0.2) = 0.02, y(0.4) = CO5 App 13 0.0795, y(0.6) = 0.1762, find y(0.8) and y(1) by Milne's method.

8. (a) (i) The population of a certain town is given below. Find the rate of CO4 Ana 14 growth of population in 1931 and 1971.

Year	1931	1941	1951	1961	1971
Population (in thousands)	40.62	60.80	79.95	103.56	132.65

(OR)

(**b**) Using Runge-Kutta method of fourth order, solve $y' = \frac{y^2 - x^2}{y^2 + x^2}$ CO5 App 14

with y (0) = 1 at x = 0.2.

Blooms Taxonomy Abbreviations: Rem-Remembrance, Und-Understanding, App- Apply, Ana-Analyze, Eva-Evaluate, Cre-Create
