

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Construction of Analytic function:
Milne-Thomson method:
Let $f(z) = u + iv$ is to be constructed
(i) Suppose the real part u is given, then
$f(z) = \int \left[\varphi_{1}(z,0) - i \varphi_{2}(z,0) \right] dz$ $(z) = \int \left[\varphi_{1}(z,0) - i \varphi_{2}(z,0) \right] dz$
where $\varphi_1(z,0) = \frac{\partial u}{\partial x}(z,0)$, $\varphi_2(z,0) = \frac{\partial u}{\partial y}(z,0)$. (ii) Suppose imaginary part v is given, then
$-f(z) = \int \left[\varphi_{i}(z_{i}0) + i \varphi_{i}(z_{i}0) \right] dz$
where $\varphi_1(z,0) = \frac{\partial v}{\partial y}(z,0)$, $\varphi_2(z,0) = \frac{\partial v}{\partial x}(z,0)$
(iii) Suppose (u-v) is given
Then $f(z) = F(z)$ where $F(z) = \int \left[\phi_i(z,0) - \frac{1}{2} \phi_i(z,0) \right]_{i=1}^{n}$
where $\rho_1(z,0) = \frac{\partial u}{\partial x}(z,0) + \frac{\partial u}{\partial y}(z,0)$
(iv) Suppose (u+v) is given 2+ (4b 16+ 4b 16-) = V wold Let V = u+v 46
Then f(z) = F(z) where
$F(z) = \int \left[\varphi_{i}(z,0) + i \varphi_{i}(z,0) \right] dz + c$
where $\varphi_{i}(z_{i0}) = \frac{\partial v}{\partial y}(z_{i0})$
$\& \varphi_{R}(z,0) = \frac{\partial v}{\partial x}(z,0)$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) DEPARTMENT OF MATHEMATICS

Show that the
$$f_1$$
 $u = x^3 + x^2 - 3xy^2 + 2xy - y^2$

is harmonic and find the corresponding analytic

 $f_1 = f(x) = u + iv$.

Soln:

 $u = x^3 + x^2 - 3xy^2 + 2xy - y^2$
 $u_x = 3x^2 + 2x - 3y^2 + 2y$; $u_y = -6xy + 2x - 2y$
 $u_{xx} = 6x + 2$; $u_{yy} = -6x - 2$
 $u_{xx} + u_{yy} = 0$
 $\Rightarrow u$ is harmonic.

 $f(z) = \int \left[\phi_1(z,0) - i \phi_2(z,0) \right] dz$

where $\phi_1(z,0) = \frac{\partial u}{\partial y}(z,0) = 3z^2 + 2z$
 $\phi_2(z,0) = \frac{\partial u}{\partial y}(z,0) = 2z$
 $f(z) = \int \left[(3z^2 + 2z) - i \cdot 2z \right] dz$
 $= \frac{3z^3}{3} + \frac{2z^2}{2} - i \cdot 2z^2 + c$
 $f(z) = z^3 + z^2(1-i) + c$

(2) Find an analytic f_1 whose imaginary part is

 $v = e^{2x}(y \cos 2y + x \sin 2y)$
 $v = e^{2x}(y \cos 2y + x \sin 2y)$
 $v = e^{2x}(y \cos 2y + x \sin 2y) + e^{2x} \sin 2y$
 $v = e^{2x}(\cos 2y + y - 2\sin 2y) + 2x \cos 2y$
 $f(z) = \int \left[\phi_1(z,0) + i \phi_2(z,0) \right] dz$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
DEPARTMENT OF MATHEMATICS

$$\varphi_{1}(z,0) = \frac{\partial V}{\partial y}(z,0) = e^{2z}(1+0+az)$$

$$= e^{2z} + aze^{2z}$$

$$= e^{2z} + aze^{2z}(0) + e^{2z}(0) = 0$$

$$f(z) = \int [e^{2z} + aze^{2z}] dz + c$$

$$= \int e^{2z} dz + aze^{2z} dz + c$$

$$= \frac{e^{2z}}{a} + a \left(\frac{ze^{2z}}{a} - \frac{e^{2z}}{a}\right) + c$$

$$= \frac{e^{2z}}{a} + a \left(\frac{ze^{2z}}{a} - \frac{e^{2z}}{a}\right) + c$$

$$= \frac{e^{2z}}{a} + c$$

$$=$$