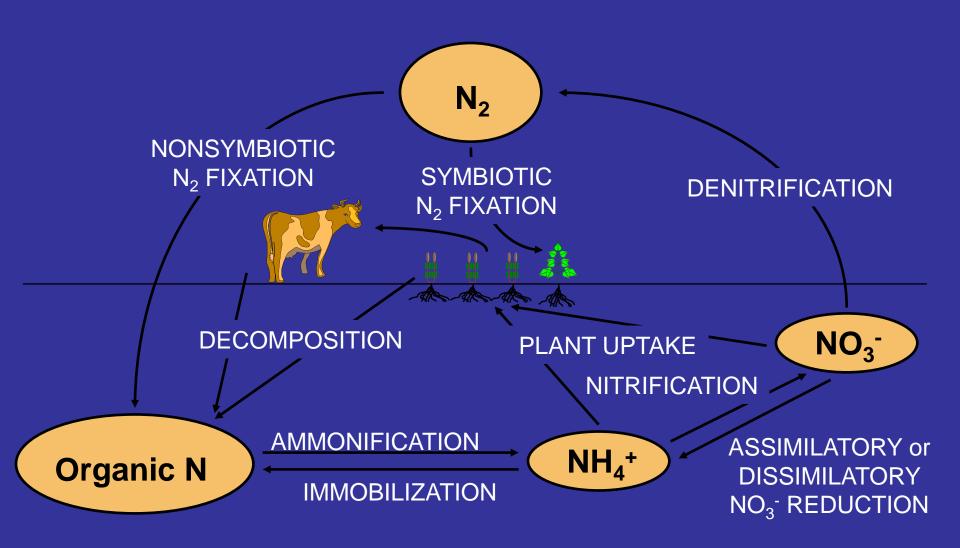
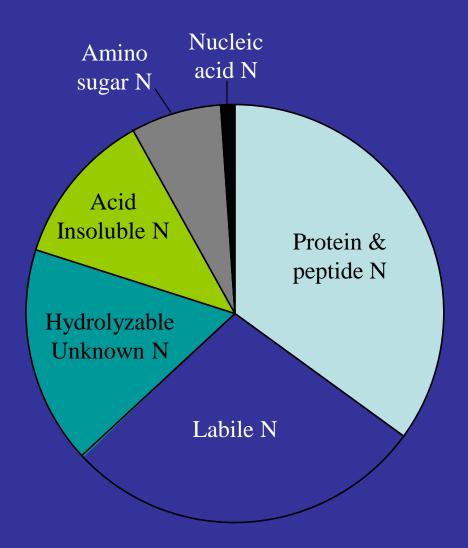
Nitrogen

- Nitrogen dynamics depend on plant chemistry (C:N ratio, pH, decomposability), carbon dynamics, microbial community
- Short-cuts for plants: N-fixing organisms, mycorrhizae, direct uptake of organic N (?)
- Human nitrogen loading: fertilizer runoff (*overflows* from previously almost-closed cycles)


What's so important about Nitrogen cycling?

essential nutrient (fertilizers, growing legumes as crops) – changes in native species composition of ecosystem


atmospheric pollutant (burning fuels)

groundwater pollutant

Nitrogen Cycle

Forms of Organic N

Major Inorganic N Compounds

Compound	Formula	Oxidation state	Form in soil
Ammonium	$\mathrm{NH_4^+}$	-3	Fixed in clay lattice, dissolved, as gaseous ammonia (NH ₃)
Hydroxylamine	NH ₂ OH	-1	Not detected
Dinitrogen	N_2	0	Gas
Nitrous oxide	N ₂ O	+1	Gas, dissolved
Nitric oxide	NO	+2	Gas, dissolved
Nitrite	NO ₂ -	+3	Dissolved
Nitrate	NO ₃ -	+5	Dissolved

Nitrogen Fixation

The nodules on the roots of this bean plant contain bacteria called *Rhizobium* that help convert nitrogen in the soil to a form the plant can utilize.

Dinitrogen Fixation

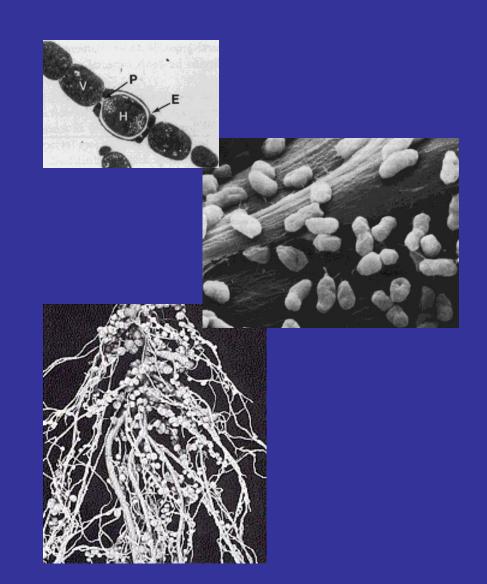
The alder, whose fat shadow nourisheth– Each plant set neere him long flourisheth. –William Browne (1613), Brittania's Pastorals, Book I, Song 2

Treatment	Yield (g)	
	Oats	Peas
No N added		
Non-inoculated	0.6	0.8
Inoculated with legume soil	0.7	16.4
Inoculated with sterile soil		0.9
112 mg NO ₃ N per pot added		
Non-inoculated	12.0	12.9
Inoculated with legume soil	11.6	15.3

Hellriegel and Wilfarth (1888)

Types of Biological Nitrogen Fixation

Free-living (asymbiotic)


- Cyanobacteria
- Azotobacter

Associative

- Rhizosphere–Azospirillum
- Lichens–cyanobacteria
- Leaf nodules

Symbiotic

- Legume-rhizobia
- Actinorhizal-Frankia

Free-living N₂ Fixation

Energy

- 20-120 g C used to fix 1 g N
- Combined Nitrogen
- *nif* genes tightly regulated
- Inhibited at low NH_4^+ and NO_3^- (1 µg g⁻¹ soil, 300 µM)

Oxygen

- Avoidance (anaerobes)
- Microaerophilly
- Respiratory protection
- Specialized cells (heterocysts, vesicles)
- Spatial/temporal separation
- Conformational protection

Associative N₂ Fixation

- Phyllosphere or rhizosphere (tropical grasses)
- Azosprillum, Acetobacter
- 1 to 10% of rhizosphere population
- Some establish within root
- Same energy and oxygen limitations as free-living
- Acetobacter diazotrophicus lives in internal tissue of sugar cane, grows in 30% sucrose, can reach populations of 10⁶ to 10⁷ cells g⁻¹ tissue, and fix 100 to 150 kg N ha⁻¹ y⁻¹

Estimated Average Rates of Biological N₂ Fixation

Organism or system	N ₂ fixed (kg ha ⁻¹ y ⁻¹)
Free-living microorganisms	
Cyanobacteria	25
Azotobacter	0.3
Clostridium pasteurianum	0.1-0.5
Grass-Bacteria associative symbioses	
Azospirillum	5-25
Cyanobacterial associations	
Gunnera	10-20
Azolla	300
Lichens	40-80
Leguminous plant symbioses with rhizobia	
Grain legumes (Glycine, Vigna, Lespedeza, Phaseolus)	50-100
Pasture legumes (Trifolium, Medicago, Lupinus)	100-600
Actinorhizal plant symbioses with Frankia	
Alnus	40-300
Hippophaë	1-150
Ceanothus	1-50
Coriaria	50-150
Casuarina	50

• Nitrogen Fixation

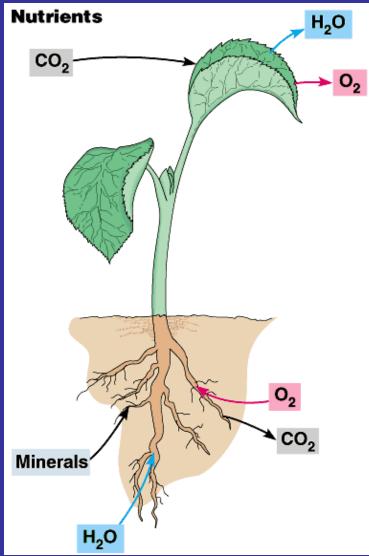
- Almost all N is in the atmosphere
- 90-190 Tg N fixed by terrestrial systems
- 40-200 Tg N fixed by aquatic systems
- 3-10 Tg N fixed by lightning
- 32-53 Tg N fixed by crops

Some biogeochemical cycling key points:

cycling occurs at local to global scales

 biogeochemical cycles have 2 basic parts: pools and fluxes

 elements are recycled among the biosphere, atmosphere, lithosphere and hydrosphere


 cycles of each element differ (chemistry, rates, pools, fluxes, interactions)

 cycling is important because it can affect many other aspects of the environment and the quality of our lives

Nitrogen Metabolism

Plant Nutrition

- Plant metabolism is based on sunlight and inorganic elements present in water, air, and soil.
 - C, H, and O and energy are used to generate organic molecules via photosynthesis.
- Other chemical elements, such as *mineral nutrients*, are also absorbed from soil.

Plant Nutrients

- Plants absorb many elements, some of which they do not need.
- An element is considered an essential nutrient if it meets three criteria:
 - It is necessary for complete, normal plant development through a full life cycle.
 - It itself is necessary; no substitute can be effective.
 - It must be acting within the plant, not outside it.
- Many roles in plant metabolism.

Types of Essential Nutrients

- Nine essential nutrients, called *macronutrients*, are needed in very large amounts
- Eight other essential nutrients, called micronutrients, are needed only in small amounts.

Essential Nutrients to Most Plants

Macronutrient	% Dry Weight	Component/Function
Carbon (C)	45.0	Organic compounds
Oxygen (O)	45.0	Organic compounds
Hydrogen (H)	6.0	Organic compounds
Nitrogen (N)	1.0-4.0	Amino acids; nucleic acids, chlorophyll
Potassium (K)	1.0	Amino acids; regulates stomata opening/closing
Calcium (Ca)	0.5	Enzyme cofactor; influences cell permeability
Phosphorus (P)	0.2	ATP; proteins; nucleic acids; phosphoplipids
Magnesium (Mg)	0.2	Chlorophyll; enzyme activator
Sulfur (S)	0.1	CoA; amino acids

Essential Nutrients to Most Plants

Micronutrient	Component/Function	
Iron (Fe)	Cytochromes; chlorophyll synthesis	
Chlorine (Cl)	Osmosis; water-splitting in photosynthesis	
Copper (Cu)	Plastocyanin; enzyme activator	
Manganese (Mn)	Enzyme activator; component of chlorophyll	
Zinc (Zn)	Enzyme activator	
Molybdenum (Mo)	Nitrogen fixation	
Boron (B)	Cofactor in chlorophyll synthesis	
Nickel (Ni)	Cofactor for enzyme functioning in nitrogen metabolism	

Nitrogen: An Essential Macronutrient

- N is not present in rock, but is abundant in the atmosphere as a gas, N_2 .
- The process of converting N₂ to chemically active forms of N is *nitrogen metabolism*.
- Nitrogen metabolism consists of 3 stages:
 - Nitrogen Fixation ($N_2 \rightarrow NO_3^-$)
 - Nitrogen Reduction $(NO_3^- \rightarrow NO_2^- \rightarrow NH_3^- \rightarrow NH_4^+)$
 - Nitrogen Assimilation (transfer of NH₂ groups)
 - Runoff, leaching, denitrification, and harvested crops reduce soil nitrogen.

Nitrogen Cycling Processes

- Nitrogen Fixation bacteria convert nitrogen gas (N_2) to ammonia (NH_3) .
- Decomposition dead nitrogen fixers release Ncontaining compounds.
- Ammonification bacteria and fungi decompose dead plants and animals and release excess NH_3 and ammonium ions (NH_4^+) .
- *Nitrification* type of chemosynthesis where NH_3 or NH_4^+ is converted to nitrite $(NO_2^{-)}$; other bacteria convert NO_2^- to nitrate $(NO_3^{-)}$.
- **Denitrification** bacteria convert NO_2^- and NO_3^- to N_2 .

Means of Nitrogen Fixation

1) Human manufacturing of synthetic fertilizers

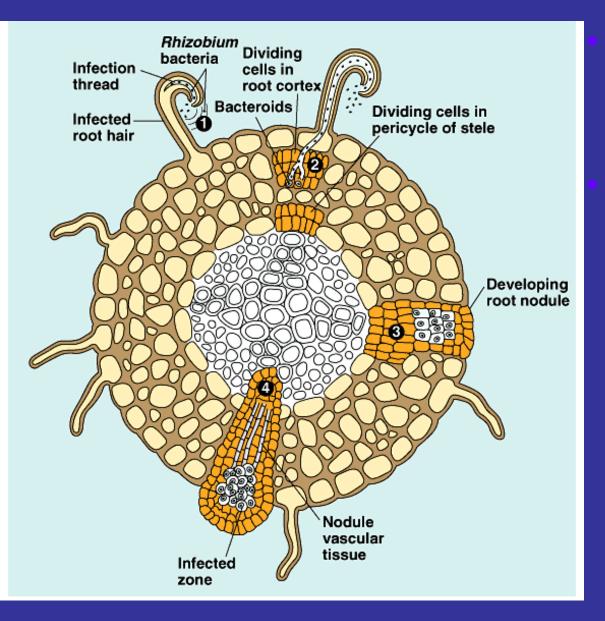
2) Lightning

3) Nitrogen-fixing bacteria and cyanobacteria

Nitrogen Fixing Bacteria and Cyanobacteria

- Some are free-living in soil (E.g., *Nostoc*, *Azotobacter*); others live symbiotically with plants (E.g., *Frankia*, *Rhizobium*).
- These organisms have *nitrogenase*, an enzyme that uses N_2 as a substrate.
- N₂ + 8e⁻ + 8H⁺ + 16ATP -> 2NH₃ + H₂ + 16ADP + 16P_i
- NH₃ is immediately converted to NH⁴⁺.
- Bacterial enzymes sensitive to O₂.
- Leghemoglobin binds to O₂ and protects enzymes.
- Symbiotic fixation rate depends on plant stage.

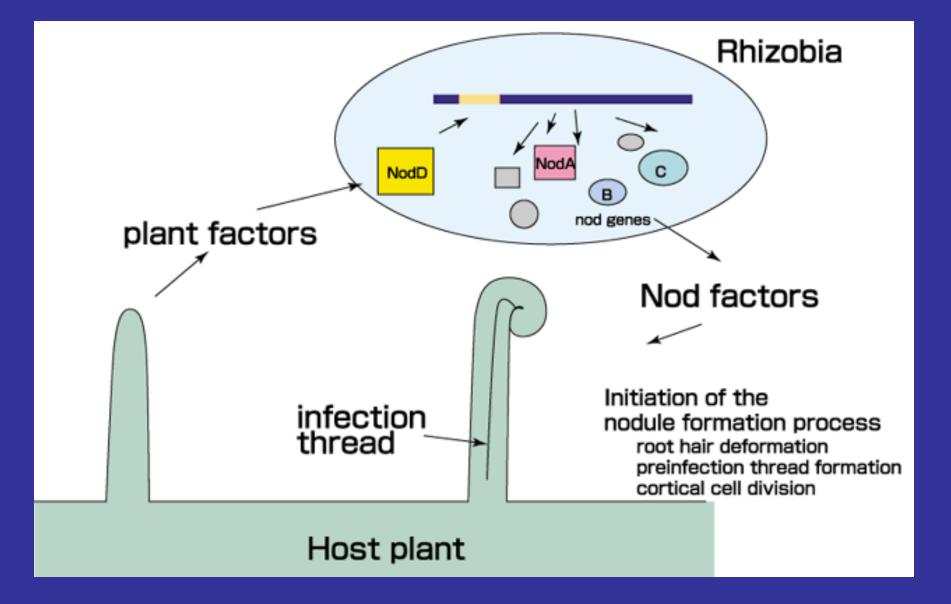
Natural Sources of Organic N


Source	% N
Dried blood	12
Peruvian guano	12
Dried fish meal	10
Peanut meal	7
Cottonseed meal	
Sludge from sewer treatment plant	
Poultry manure	
Bone meal	
Cattle manure	2

Symbiotic Nitrogen Fixation

- Nitrogen-fixing bacteria fix N (E.g., *Rhizobium*)
- Plants fix sugars (E.g., legumes).
- Plants form swellings that house N-fixing bacteria, called *root nodules*.
- Mutualistic association.
- Excess NH₃ is released into soil.
- Crop rotation maintains soil fertility.

Development of a Root Nodule


Bacteria enter the root through an infection thread. Bacteria are then released into cell and assume form called *bacteroids*, contained within vesicles.

Symbiotic Nitrogen Fixation

The Rhizobium-legume association

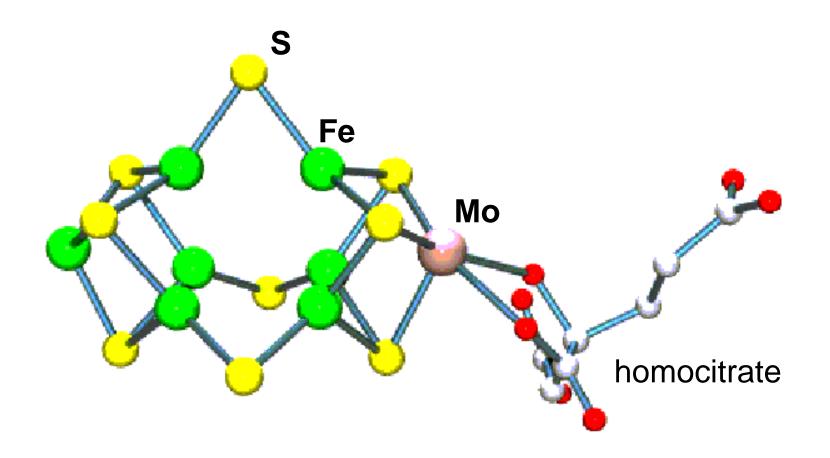
Bacterial associations with certain plant families, primarily legume species, make the largest single contribution to biological nitrogen fixation in the biosphere

When this association is not present or functional, we apply nitrogen-containing fertilizers to replace reduced nitrogen removed from the soil during repeated cycles of crop production.

This practice consumes fossil fuels, both in fertilizer production and application.

Biological nitrogen fixation is the reduction of atmospheric nitrogen gas (N_2) to ammonium ions (NH_4^+) by the oxygen-sensitive enzyme, **nitrogenase**. Reducing power is provided by NAPH/ferredoxin, via an Fe/Mo centre.

Plant genomes lack any genes encoding this enzyme, which occurs only in prokaryotes (bacteria).


Even within the bacteria, only certain free-living bacteria (*Klebsiella, Azospirillum, Azotobacter*), blue-green bacteria (*Anabaena*) and a few symbiotic Rhizobial species are known nitrogen-fixers.

Another nitrogen-fixing association exists between an Actinomycete (Frankia spp.) and alder (Alnus spp.) The enzyme **nitrogenase** catalyses the conversion of atmospheric, gaseous dinitrogen (N_2) and dihydrogen (H_2) to ammonia (NH_3), as shown in the chemical equation below:

$N_2 + 3 H_2 \Rightarrow 2 NH_3$

The above reaction seems simple enough and the atmosphere is 78% N_2 , so why is this enzyme so important?

The incredibly strong (triple) bond in N_2 makes this reaction very difficult to carry out efficiently. In fact, nitrogenase consumes ~16 moles of ATP for every molecule of N_2 it reduces to NH_3 , which makes it one of the most energy-expensive processes known in Nature.

Fe - S - Mo electron transfer cofactor in nitrogenase

Biological NH₃ creation (nitrogen fixation) accounts for an estimated 170 x 10^9 kg of ammonia every year. Human industrial production amounts to some 80 x 10^9 kg of ammonia yearly.

The industrial process (Haber-Bosh process) uses an Fe catalyst to dissociate molecules of N_2 to atomic nitrogen on the catalyst surface, followed by reaction with H_2 to form ammonia. This reaction typically runs at ~450° C and 500 atmospheres pressure.

These extreme reaction conditions consume a huge amount of energy each year, considering the scale at which NH₃ is produced industrially.

The Dream....

If a way could be found to mimic nitrogenase catalysis (a reaction conducted at 0.78 atmospheres N_2 pressure and ambient temperatures), huge amounts of energy (and money) could be saved in industrial ammonia production.

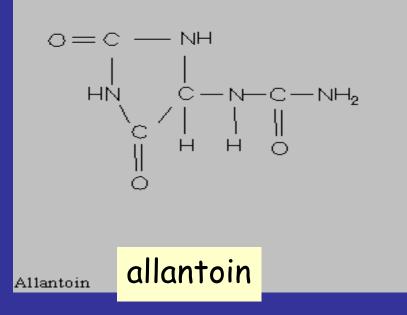
If a way could be found to transfer the capacity to form N-fixing symbioses from a typical legume host to an important non-host crop species such as corn or wheat, far less fertilizer would be needed to be produced and applied in order to sustain crop yields Because of its current and potential economic importance, the interaction between Rhizobia and leguminous plants has been intensively studied.

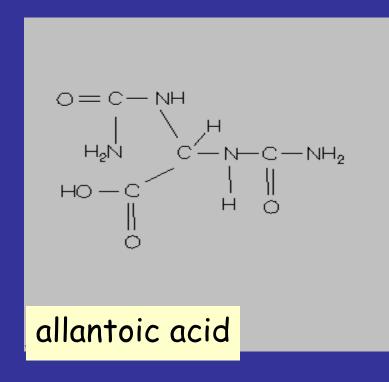
Our understanding of the process by which these two symbionts establish a functional association is still not complete, but it has provided a paradigm for many aspects of cell-to-cell communication between microbes and plants (e.g. during pathogen attack), and even between cells within plants (e.g. developmental signals; fertilization by pollen). Symbiotic Rhizobia are classified in two groups:

Fast-growing *Rhizobium* spp. whose nodulation functions (nif, fix) are encoded on their symbiotic megaplasmids (pSym)

Slow-growing *Bradyrhizobium* spp. whose N-fixation and nodulation functions are encoded on their chromosome.

There are also two types of nodule that can be formed: determinate and indeterminate This outcome is controlled by the plant host Determinate nodules

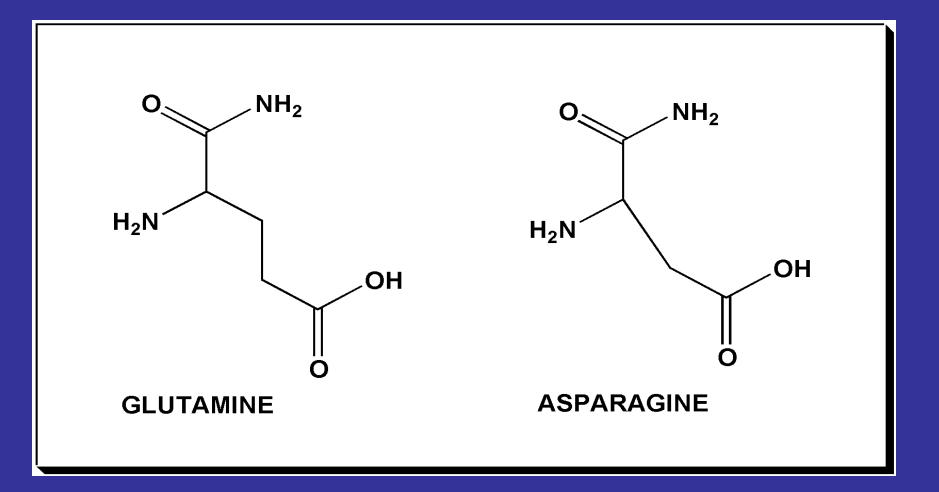

Formed on tropical legumes by *Rhizobium* and *Bradyrhizobium*


Meristematic activity not persistent - present only during early stage of nodule formation; after that, cells simply expand rather than divide, to form **globose nodules.**

Nodules arise just below epidermis; largely internal vascular system

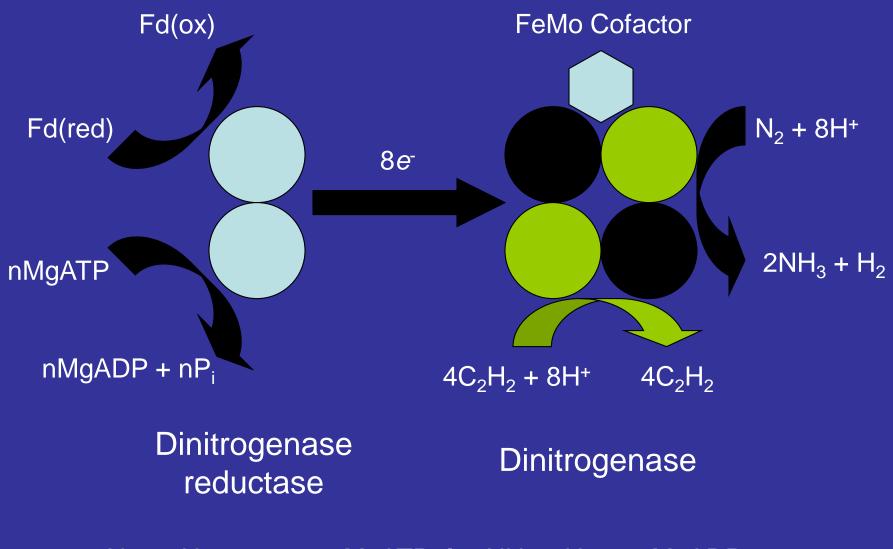
Uninfected cells dispersed throughout nodule; equipped to assimilate NH_4^+ as **ureides** (allantoin and allantoic acid)

Indeterminate nodules


Formed on temperate legumes (pea, clover, alfalfa); typically by *Rhizobium* spp.

Cylindrical nodules with a **persistent meristem**; nodule growth creates zones of different developmental stages

Nodule arises near endodermis, and nodule vasculature clearly connected with root vascular system

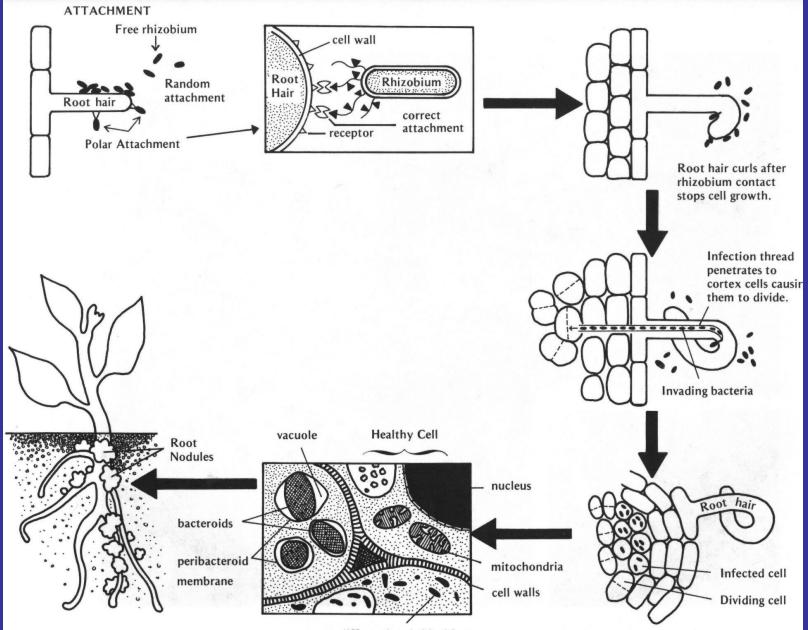

Uninfected cells of indeterminate nodules assimilate NH4⁺ as **amides** (asparagine, glutamine)

Genetics of Nitrogenase

Gene **Properties and function** nifH Dinitrogenase reductase nifDK Dinitrogenase nifA Regulatory, activator of most *nif* and *fix* genes FeMo cofactor biosynthesis *nifB* nifEN FeMo cofactor biosynthesis nifS Unknown *fixABCX* Electron transfer fixK Regulatory fixLJ Regulatory, two-component sensor/effector *fixNOQP* Electron transfer fixGHIS Transmembrane complex

Nitrogenase

 $N_2 + 8H^+ + 8e^- + 16 MgATP \rightarrow 2NH_3 + H_2 + 16MgADP$


Taxonomy of Rhizobia

Genus	Species	Host plant
Rhizobium	leguminosarum bv. trifolii " bv. viciae " bv. phaseoli tropici etli	Trifolium (clovers) Pisum (peas), Vicia (field beans), Lens (lentils), Lathyrus Phaseolus (bean) Phaseolus (bean), Leucaena Phaseolus (bean)
Sinorhizobium	meliloti fredii saheli teranga	<i>Melilotus</i> (sweetclover), <i>Medicago</i> (alfalfa), <i>Trigonella</i> <i>Glycine</i> (soybean) <i>Sesbania</i> <i>Sesbania, Acacia</i>
Bradyrhizobium	japonicum elkanii liaoningense	<i>Glycine</i> (soybean) <i>Glycine</i> (soybean) <i>Glycine</i> (soybean)
Azorhizobium	caulinodans	Sesbania (stem nodule)
'Meso rhizobium'	loti huakuii ciceri tianshanense mediterraneum	<i>Lotus</i> (trefoil) <i>Astragalus</i> (milkvetch) <i>Cicer</i> (chickpea) <i>Cicer</i> (chickpea)
[Rhizobium]	galegae	<i>Galega</i> (goat's rue), <i>Leucaena</i>
Photorhizobium	spp.	Aeschynomene (stem nodule)

Nitrogen Fixation

- Energy intensive process :
- N₂ + 8H+ + 8e⁻ + 16 ATP = 2NH₃ + H₂ + 16ADP + 16 Pi
- Performed only by selected bacteria and actinomycetes
- Performed in nitrogen fixing crops (ex: soybeans)

Nodulation in Legumes

undifferentiated rhizobium

Sources

- Lightning
- Inorganic fertilizers
- Nitrogen Fixation
- Animal Residues
- Crop residues
- Organic fertilizers

Forms of Nitrogen

- Urea \rightarrow CO(NH₂)₂
- Ammonia → NH₃ (gaseous)
- Ammonium → NH₄
- Nitrate \rightarrow NO₃
- Nitrite \rightarrow NO₂
- Atmospheric Dinitrogen $\rightarrow N_2$
- Organic N

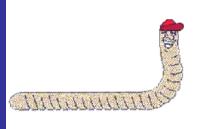
Global Nitrogen Reservoirs

Nitrogen Reservoir	Metric tons nitrogen	Actively cycled
Atmosphere	3.9*10 ¹⁵	No
Ocean → soluble salts Biomass	6.9*10 ¹¹ 5.2*10 ⁸	Yes Yes
Land → organic matter → Biota	1.1*10 ¹¹ 2.5*10 ¹⁰	Slow Yes

Roles of Nitrogen

- Plants and bacteria use nitrogen in the form of NH₄⁺ or NO₃⁻
- It serves as an electron acceptor in anaerobic environment
- Nitrogen is often the most limiting nutrient in soil and water.

Nitrogen is a key element for


- amino acids
- nucleic acids (purine, pyrimidine)
- cell wall components of bacteria (NAM).

Nitrogen Cycles

- Ammonification/mineralization
- Immobilization
- Nitrogen Fixation
- Nitrification
- Denitrification

Mineralization or Ammonification

- Decomposers: earthworms, termites, slugs, snails, bacteria, and fungi
- Uses extracellular enzymes → initiate degradation of plant polymers
- Microorganisms uses:
- Proteases, lysozymes, nucleases to degrade nitrogen containing molecules

- Plants die or bacterial cells lyse → release of organic nitrogen
- Organic nitrogen is converted to inorganic nitrogen (NH₃)
- When pH<7.5, converted rapidly to NH₄
- Example:

Urea $NH_3 + 2 CO_2$

Immobilization

- The opposite of mineralization
- Happens when nitrogen is limiting in the environment
- Nitrogen limitation is governed by C/N ratio
- C/N typical for soil microbial biomass is 20
- C/N < 20 \rightarrow Mineralization
- C/N > 20 \rightarrow Immobilization

Microorganisms fixing

- Azobacter
- Beijerinckia
- Azospirillum
- Clostridium
- Cyanobacteria

- Require the enzyme nitrogenase
- Inhibited by oxygen
- Inhibited by ammonia (end product)

Rates of Nitrogen Fixation

N ₂ fixing system	Nitrogen Fixation (kg N/hect/year)
Rhizobium-legume	200-300
Cyanobacteria- moss	30-40
Rhizosphere associations	2-25
Free-living	1-2

Bacterial Fixation

- Occurs mostly in salt marshes
- Is absent from low pH peat of northern bogs
- Cyanobacteria found in waterlogged soils

Denitrification

- Removes a limiting nutrient from the environment
- $4NO_3^- + C_6H_{12}O_6 \rightarrow 2N_2 + 6H_2O_6$
- Inhibited by O₂
- Not inhibited by ammonia
- Microbial reaction
- Nitrate is the terminal electron acceptor