Plant Nutrition

1. Plant Nutrients

- Macronutrients
- Micronutrients

2. Chemical Fertilizers

- Commercial Analysis
- Elemental Analysis

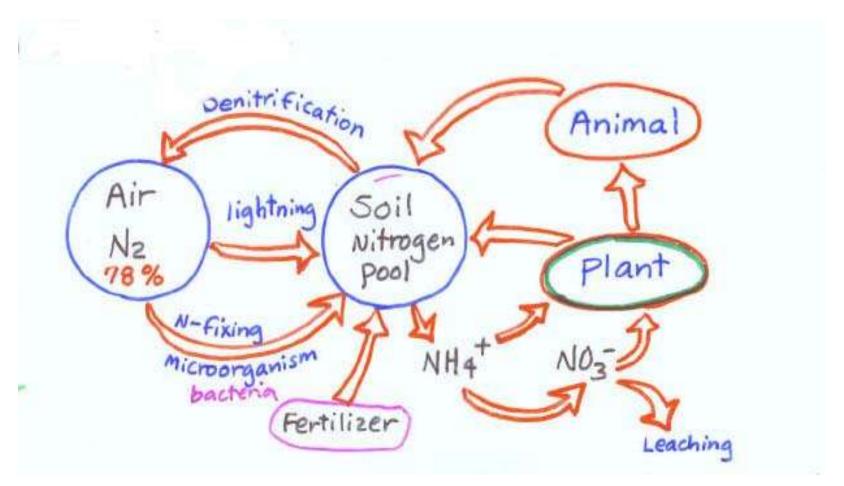
3. Fertilizer Concentration Calculations

- ppm
- mM
- Meq/liter

4. Fertilizer Application

- Preplant Application
- Top Dressing
- Liquid Feeding

1. Essential Nutrietns of Plants


Element	Chemical symbol	Atomic weight	Ionic forms Absorbed by plants	Approximate dry concentration	
Mccronutrients					
Nitrogen %	N	14.01	NO ₃ -, NH ₄ +		4.0
Phosphorus	Р	30.98	PO ₄ ³⁻ , HPO ₄ ²⁻ , H ₂ PO ₄ ⁻	0.5 %	
Potassium	K	39.10	K+	4.0 %	
Magnesium	Mg	24.32	Mg ²⁺	0.5 %	
Sulfur	S	32.07	SO ₄ ²⁻	0.5 %	
Calcium	Ca	40.08	Ca ²⁺	1.0 %	
Micronutrients					
Iron	Fe	55.85	Fe ²⁺ , Fe ³⁺	200 ppm	
Manganese	Mn	54.94	Mn ²⁺	200 ppm	
Zinc	Zn	65.38	Zn ²⁺	30 ppm	
Copper	Cu	63.54	Cu ₂ +	10 ppm	
Boron	В	10.82	BO_3^{-2} , $B_4O_7^{-2}$	60 ppm	
Molybdenum	Мо	95.95	MoO ₄ 2-	2 ppm	
Chlorine	CI	35.46	CI ⁻	3000 ppm	
Essential But	t Not Appl	lied			
Carbon	С	12.01	CO ₂	40 %	
Hydrogen	Н	1.01	H₂Ō	6 %	
Oxygen	Ο	16.00	O_2 , H_2O	40 %	

Plant tissues also contain other elements (Na, Se, Co, Si, Rb, Sr, F, I) which are not needed for the normal growth and development.

2. Macronutrients

a. Nitrogen (N)

1) Soil Nitrogen Cycle

A. Nitrogen (N)

- 1) Soil Nitrogen Cycle
- a) Nitrogen Fixation
 - -Transformation of atmospheric N to nitrogen forms available to plants
 - Mediated by N-fixing bacteria:

Rhizobium (symbiotic) found in legumes (bean, soybean) **Azotobacter** (non-symbiotic bacteria)

b) Soil Nitrification

- Decomposition of organic matter into ammonium and nitrate
- Mediated by ammonifying and nitrifying bacteria

Ammonifying bacteria Nitrifying bacteria (Actinomycetes) (Nitrosomonas) (Nitrobacter)

Plant residue
$$\rightarrow$$
 NH₄⁺ \rightarrow NO₂ \rightarrow NO₃⁻ (Protein, aa, etc) Ammonium Nitrite Nitrate

2) N Functions in Plants

- Component of proteins, enzymes, amino acids, nucleic acids, chlorophyll
- C/N ratio (Carbohydrate: Nitrogen ratio)
 High C/N ratio → Plants become more reproductive
 Low C/N ratio → Plants become more vegetative
- Transamination
 NO₃⁻ → NH₂ → Glutamic acid → Other amino acids (a.a.) → Protein
 Enzymes
- Essential for fast growth, green color

3) Deficiency and Toxicity Symptoms

Deficiency: - Reduced growth

- Yellowing of old leaves

Toxicity (excess): - Shoot elongation

- Dark leaves, succulence

4) Fertilizers

- Ammonium nitrate (NH₄NO₃)
 Calcium nitrate [Ca(NO₃)₂]
 Potassium nitrate (KNO₃)
 Urea [CO(NH₂)₂]
- Most plants prefer 50:50 NH₄+: NO₃-

 NH_4^+ -form of $N \rightarrow lowers$ soil pH NO_3^- -form of $N \rightarrow raises$ soil pH

- Organic fertilizers (manure, plant residue) slow acting
- N can be applied foliarly

Nitrogen (N) Deficiency Symptoms

Yellowing of mature lower leaves- nitrogen is highly mobile in plants

B. Phosphorus (P)

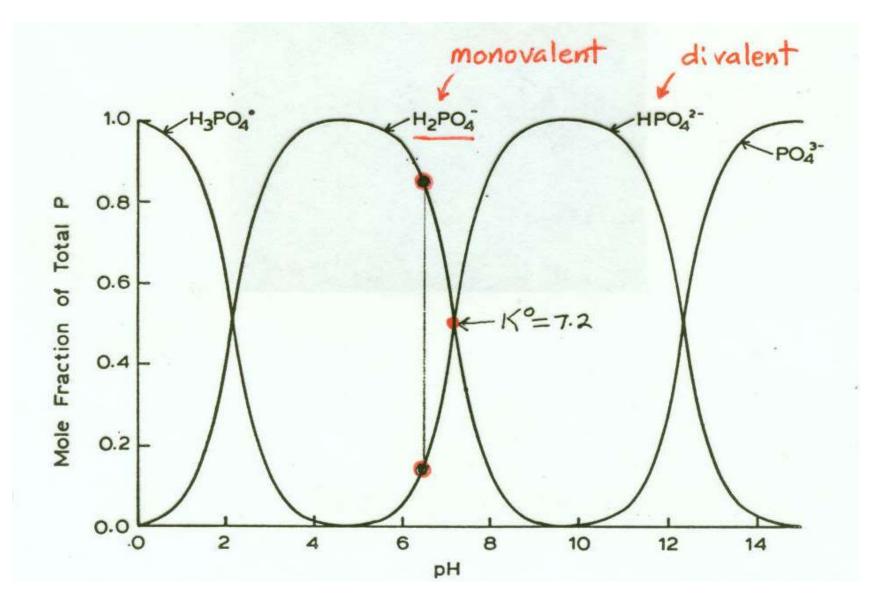
1) Soil Relations

- Mineral apatite [Ca₅F(PO₄)₃]
- Relatively stable in soil
- Has a low mobility (top dressing not effective)

2) Plant Functions

- Component of nucleic acid (DNA, RNA), phospholipids, coenzymes, high-energy phosphate bonds (ADP, ATP)
- Seeds are high in P

3) Deficiency and Toxicity


- P is mobile in plant tissues (Deficiency occurs in older leaves)
- Deficiency: dark, purplish color on older leaves
- Excess P: causes deficiency symptoms of Zn, Cu, Fe, Mn

4) Fertilizers

- Superphosphates (may contain F)

```
Single superphosphate (8.6% P): CaH_4(PO_4)_2
Triple superphosphate (20% P): CaH_4(PO_4)_2
```

- Ammonium phosphate: (NH₄)₂PO₄, NH₄HPO₄
- Bone meal
- Available forms: PO₄³⁻, HPO₄²⁻, H₂PO₄⁻ P absorption influenced by pH

Influence of pH on different forms of phosphorus (P)

C. Potassium (K)

1) Soil Relations

- Present in large amounts in mineral soil
- Low in organic soils

2) Plant Functions

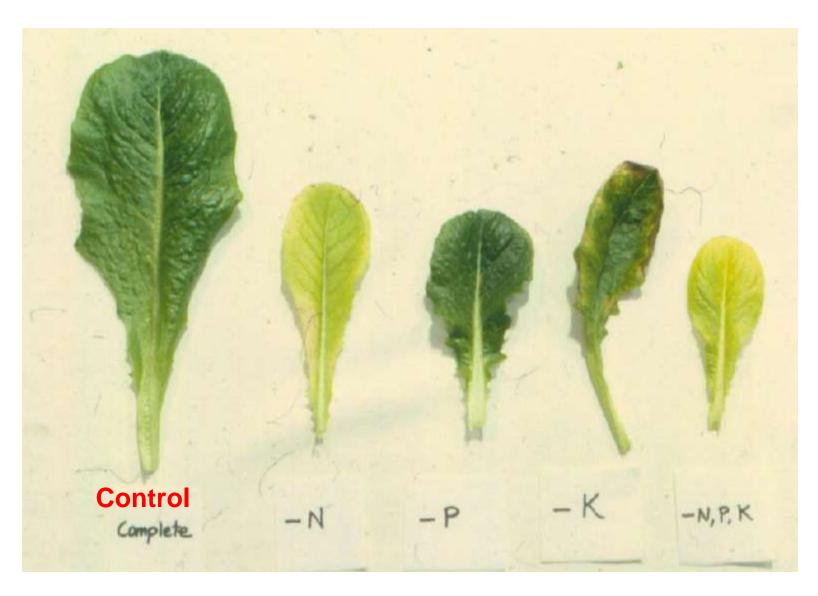
- Activator of many enzymes
- Regulation of water movement across membranes and through stomata (Guard cell functions)

3) Deficiency and Toxicity

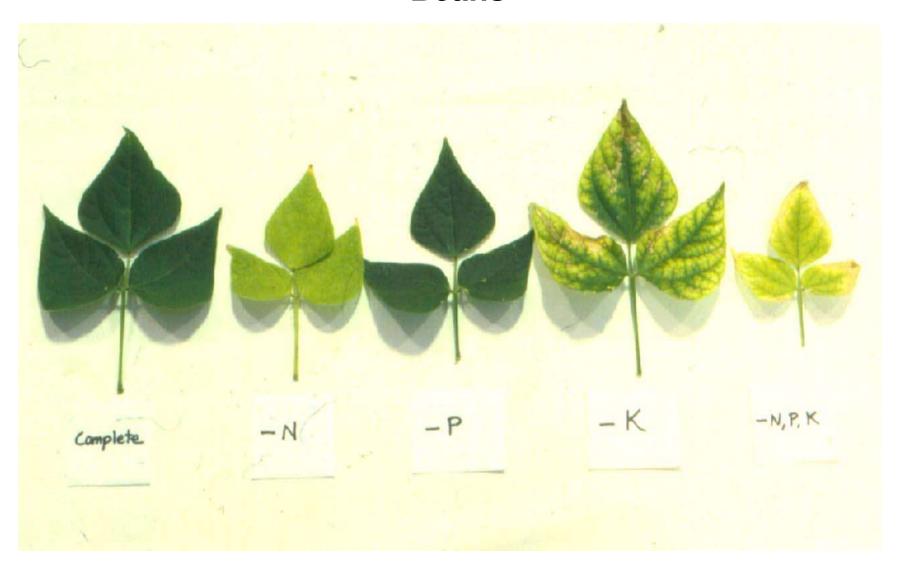
- Deficiency: Leaf margin necrosis and browning

Older leaves are more affected

- Toxicity: Leaf tip and marginal necrosis


4) Fertilizers

- Potassium chloride (KCI)- murate of potash
- Potassium sulfate (K₂SO₄)
- Potassium nitrate (KNO₃)


Leaf Margin Necrosis in Poinsettia Potassium (K) Deficiency

Macronutrients N, P, K Deficiencies Leaf Lettuce

Macronutrient Deficiencies Beans

D. Calcium (Ca)

1) Soil Relations

- Present in large quantities in earth's surface (~1% in US top soils)
- Influences availability of other ions from soil

2) Plant Functions

- Component of cell wall
- Involved in cell membrane function
- Largely present as calcium pectate in meddle lamela

 Calcium pectate is immobile in plant tissues

3) Deficiency and Toxicity

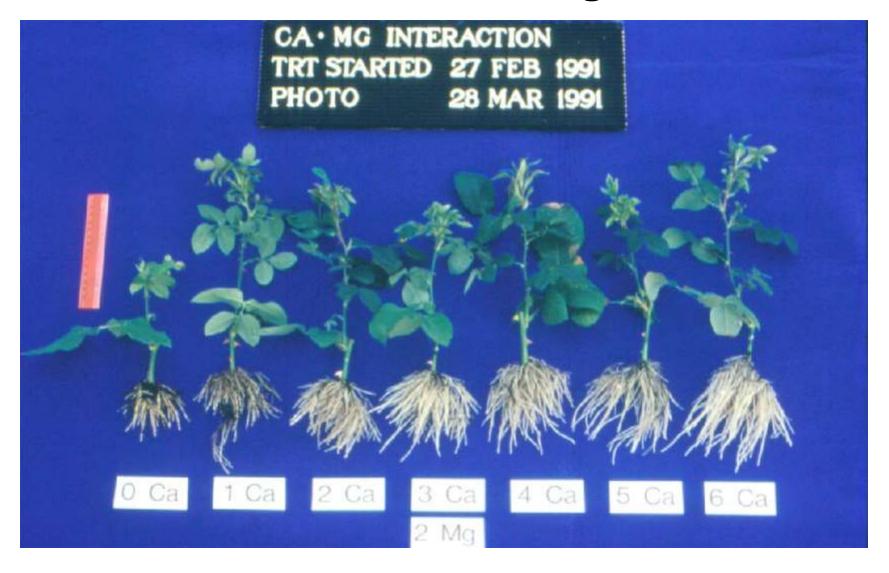
- Deficiency symptoms in young leaves and new shoots (Ca is immobile)

Stunted growth, leaf distortion, necrotic spots, shoot tip death

Blossom-end rot in tomato

No Ca toxicity symptoms have been observed

4) Fertilizers


- Agricultural meal (finely ground CaCO₃·MgCO₃)
- Lime (CaCO₃), Gypsum (CaSO₄)
- Superphosphate
- Bone meal-organic P source

Blossom End Rot of Tomato Calcium Deficiency

Right-Hydroponic tomatoes grown in the greenhouse, Left-Blossom end rot of tomato fruits induced by calcium (Ca++) deficiency

Influence of Calcium on Root Induction on Rose Cuttings

E. Sulfur (S)

1) Soil Relations

- Present in mineral pyrite (FeS₂, fool's gold), sulfides (S-mineral complex), sulfates (involving SO₄-2)
- Mostly contained in organic matter
- Acid rain provides sulfur

2) Plant Functions

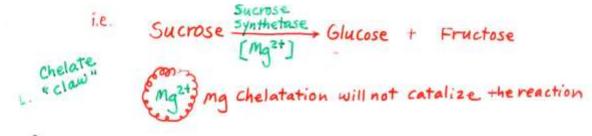
- Component of amino acids (methionine, cysteine)
- Constituent of coenzymes and vitamins
- Responsible for pungency and flavbor (onion, garlic, mustard)

3) Deficiency and Toxicity

- Deficiency: light green or yellowing on new growth (S is immobile)
- Toxicity: not commonly seen

4) Fertilizers

- Gypsum (CaSO₄)
- Magnesium sulfate (MgSO₄)
- Ammonium sulfate [(NH₄)₂SO₄]
- Elemental sulfur (S)


F. Magnesium (Mg)

1) Soil Relations

- Present in soil as an exchangeable cation (Mg²⁺)
- Similar to Ca²⁺ as a cation

2) Plant Functions

- Core component of chlorophyll molecule
- Catalyst for certain enzyme activity

3) Deficiency and Toxicity

- Deficiency: Interveinal chlorosis on mature leaves

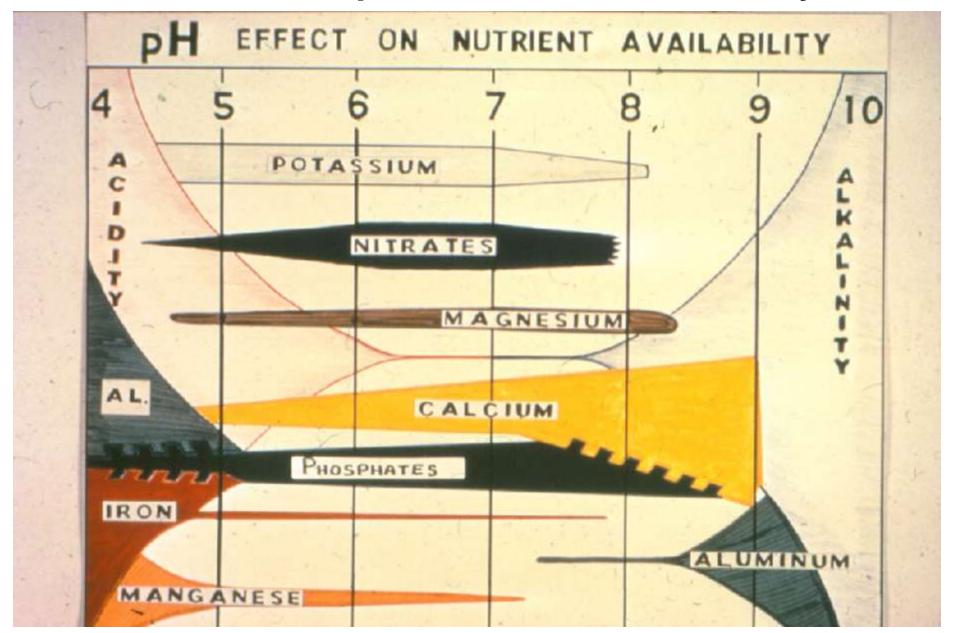
(Mg is highly mobile)

- Excess: Causes deficiency symptoms of Ca, K

4) Fertilizers

- Dolomite (mixture of CaCO₃·MgCO₃)
- Epsom salt (MgSO₄)
- Magnesium nitrate [Mg(NO₃)₂]
- Magnesium sulfate (MgSO₄)

Magnesium (Mg) Deficiency on Poinsettia



Interveinal Chlorosis on Mature Leaves

Micronutrients

- Micronutrient elements
 - Iron (Fe)
 - Manganese (Mn)
 - Boron (B)
 - Zinc (Zn)
 - Molybdenum (Mo)
 - Copper (Cu)
 - Chlorine (CI)
- Usually supplied by irrigation water and soil
- Deficiency and toxicity occur at pH extremes

Influence of pH on Nutrient Availability

3. Micronutrients

A. Iron (Fe)

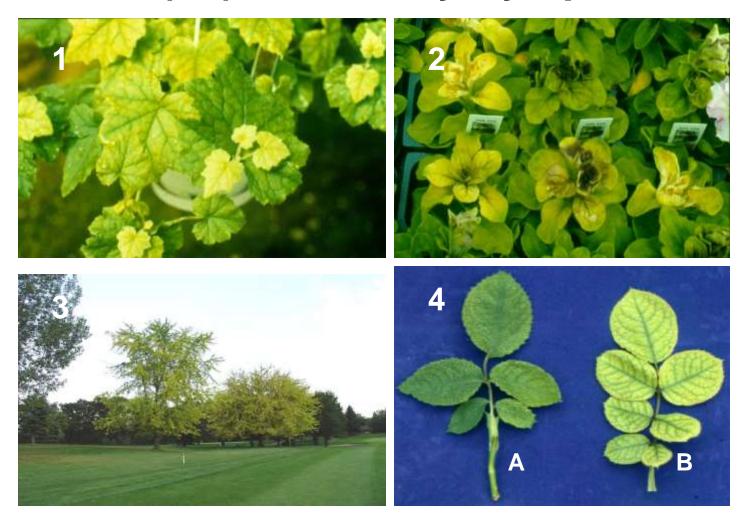
- Component of cytochromes (needed for photosynthesis)
- Essential for N fixation (nitrate reductase) and respiration
- Deficiency

Symptom: Interveinal chlorosis on new growth

Fe is immobile

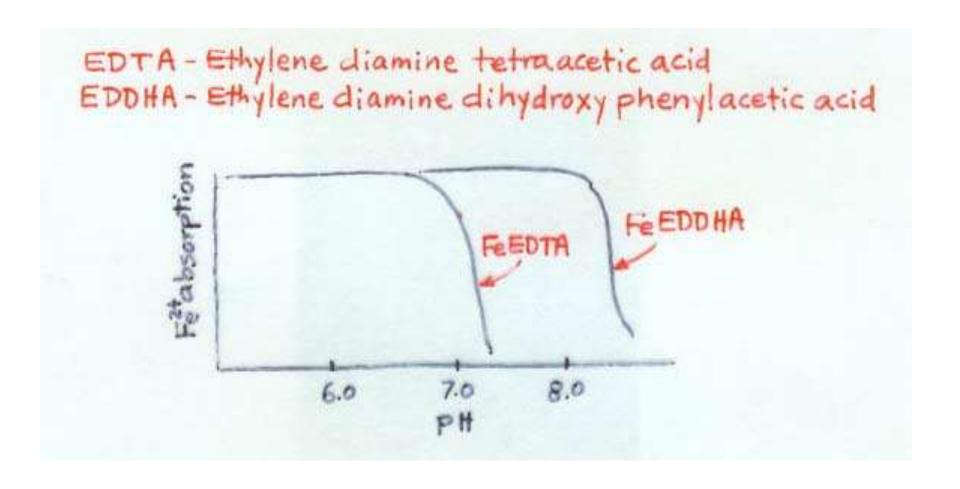
Iron chlorosis develops when soil pH is high

Remedy for iron chlorosis:

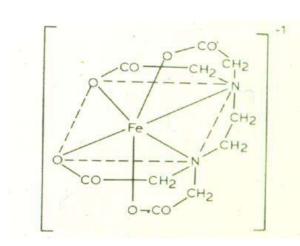

1) Use iron chelates

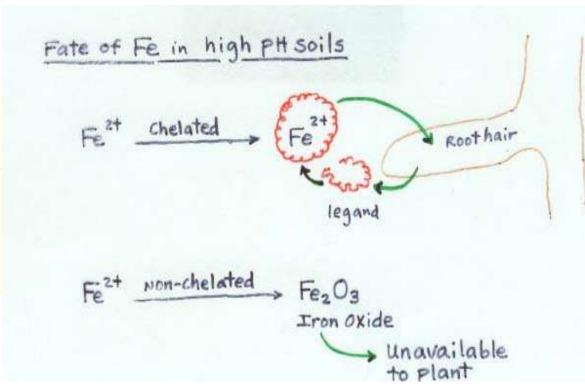
```
FeEDTA (Fe 330) – Stable at pH < 7.0
FeEDDHA (Fe 138) – Stable even when pH > 7.0
```

2) Lower soil pH


Iron is in more useful form (Fe²⁺)

Iron (Fe) Deficiency Symptoms




1-Piggyback Plant, 2- Petunia, 3-Silver Maple, 4-Rose (A-normal, B-Fe-deficient)

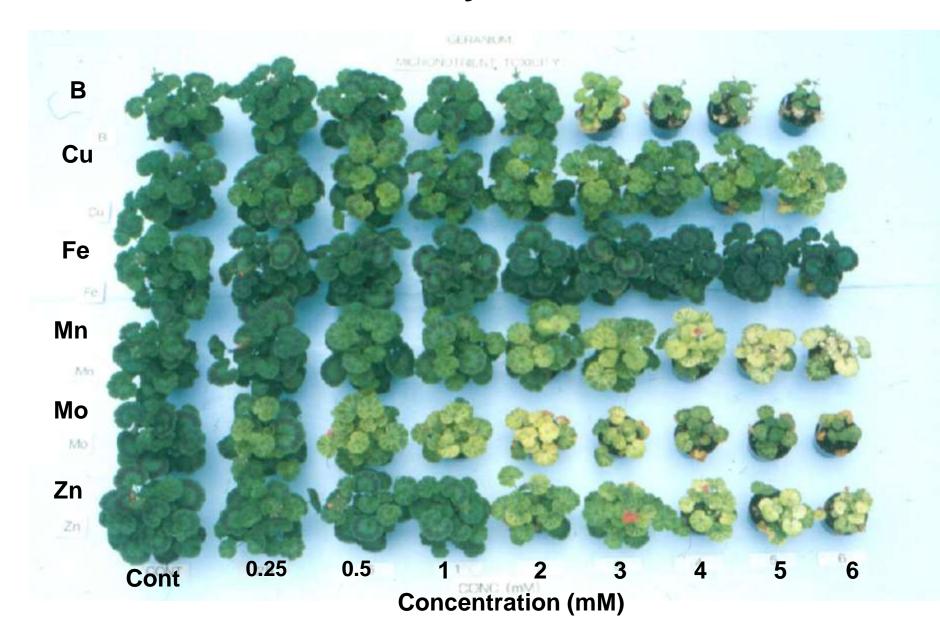
Iron Chelates

Iron (Fe) Absorption by Plants

B. Manganese (Mn)

- Required for chlorophyll synthesis, O₂ evolution during photoshynthesis
- Activates some enzyme systems
- Deficiency: Mottled chlorsis between main veins of new leaves (Mn is immobile), similar to Fe chlorosis
- Toxicity: Chlorosis on new growth with small, numerous dark spots
 Deficiency occurs at high pH
 Toxicity occurs at low pH
- Fertilizers: Manganese sulfate (MnSO₄)
 Mn EDTA (chelate) for high pH soils

C. Boron (B)


- Involved in carbohydrate metabolism
- Essential for flowering, pollen germination, N metabolism
- Deficiency: New growth distorted and malformed, flowering and fruitset depressed, roots tubers distorted
- Toxicity: Twig die back, fruit splitting, leaf edge burns
- Fertilizers: Borax (Na₂B₄O₇10H₂O), calcium borate (NaB₄O₇ 4H₂O)

D. Zinc (Zn)

- Involved in protein synthesis, IAA synthesis
- Deficiency: (occurs in calcarious soil and high pH)

 Growth suppression, reduced internode lengths, rosetting, interveinal chlorosis on young leaves (Zn is immobile in tissues)
- Toxicity: (occurs at low pH) Growth reduction, leaf chlorosis

Micronutrient Toxicity on Seed Geranium

E. Molybdenum (Mo)

- Required for nitrate reductase activity, vitamin synthesis

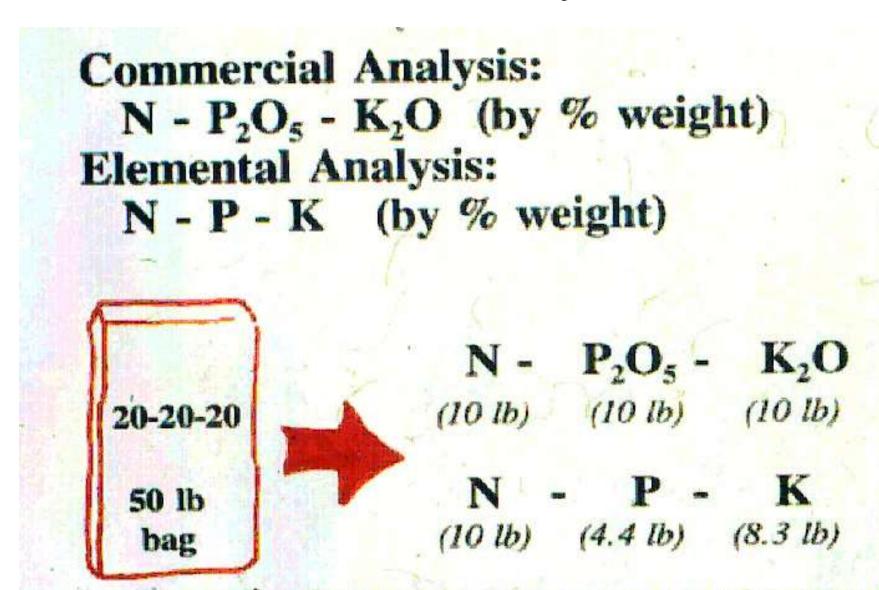
NO₃- → NH₂
Mo
Root-nodule bacteria also requires Mo

Deficiency: Pale green, cupped young leaves (Mo is immobile)
 Strap leafe in broad leaf plants
 Occurs at low pH

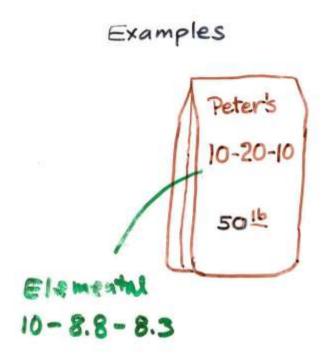
- Toxicity: Chlorosis with orange color pigmentation
- Fertilizer: Sodium molybdate

F. Copper (Cu)

- Essential component of several enzymes of chlorophyll synthesis, carbohydrate metabolism
- Deficiency: Rosette or 'witch's broom'
- Toxicity: Chlorosis
- Fertilizers: Copper sulfate (CuSO₄)


G. Chlorine (CI)

- Involved for photosynthetic oxygen revolution
- Deficiency: Normally not existing (Only experimentally induced)
- Toxicity: Leaf margin chlorosis, necrosis on all leaves
- Fertilizer: Never applied (Cl⁻ is ubiquitous!)


Molybdenum Deficiency on Poinsettia

Fertilizer Analysis

Commercial Analysis vs Elemental Analysis

A 50 lb bag of a 10-20-10 Fertilizer contains:
$$10\% = 0.1$$
 $50^{1b} \times 0.1 = 5^{1b} N$
 $50^{1b} \times 0.2 = 10^{1b} P_2 O_5$ includes oxides

 $50^{1b} \times 0.1 = 5^{1b} K_2 O$

Total

 20^{1b}
 $10^{1b} \times 0.44 = 4.4^{1b} P$
 $10^{1b} \times 0.44 = 4.4^{1b} P$
 $10^{1b} \times 0.83 = 4.15^{1b} K$

Elemental

Fertilizer Rates and Concentrations

British System

- lb/1000 ft² (solid, field application)
- 1b/acre (solid, field application)
- oz/100 gallon (=75 ppm)
- pint/gallon

Metric System

- kg/ha (solid, field application)
- parts per million (ppm)
- milli-molar (mM)
- Milli-equivalent per liter (meq/L)

Molar (M) Concentrations

Weight

```
mole = molecular weight (g)
mmole = 0.001 mole = molecular wt (mg)
μmole = 0.000,001 mole = molecular wt (μg)
```

Concentration

```
molar (M) = mole/liter
milli-molar (mM) = mmole/liter
micro-molar (μM) = μmole/liter
```

To Make 50 gallon of 200 ppm N Solution

Concentration

```
1 ppm = 1 mg/liter
200 ppm = 200 mg/liter
```

Fertilizer Solution

Fertilizer: 20-20-20 N-P₂O₅-K₂O

Amount/liter = 200 mg x 1/0.2 = 1,000 mg = 1g

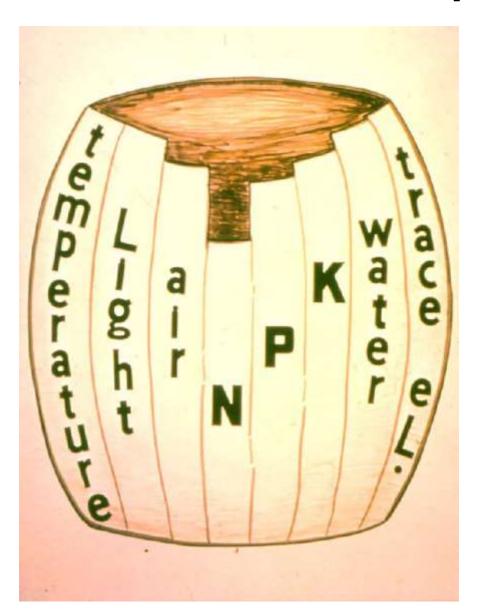
Amount/50 gal

1 g/liter x 3.8 liter/gal x 50 gal = 190 g

Fertilizer Application

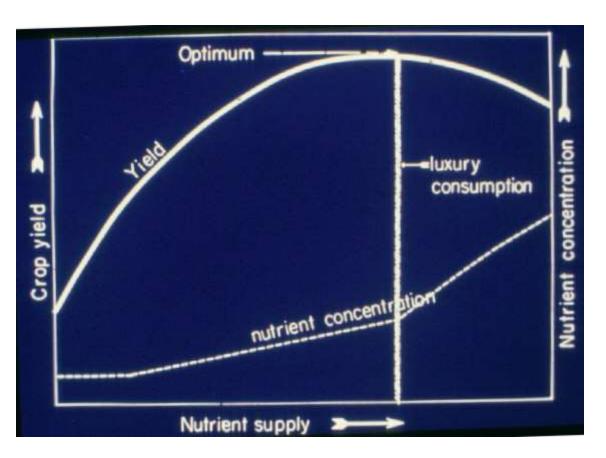
1. Preplant Application

-Lime, sulfur, superphosphate, gypsum, dolomite


2. Dry Application

- Fertilizers with solubility <20 g/100 ml
- Top dressing
- Do not apply lime with phosphorus

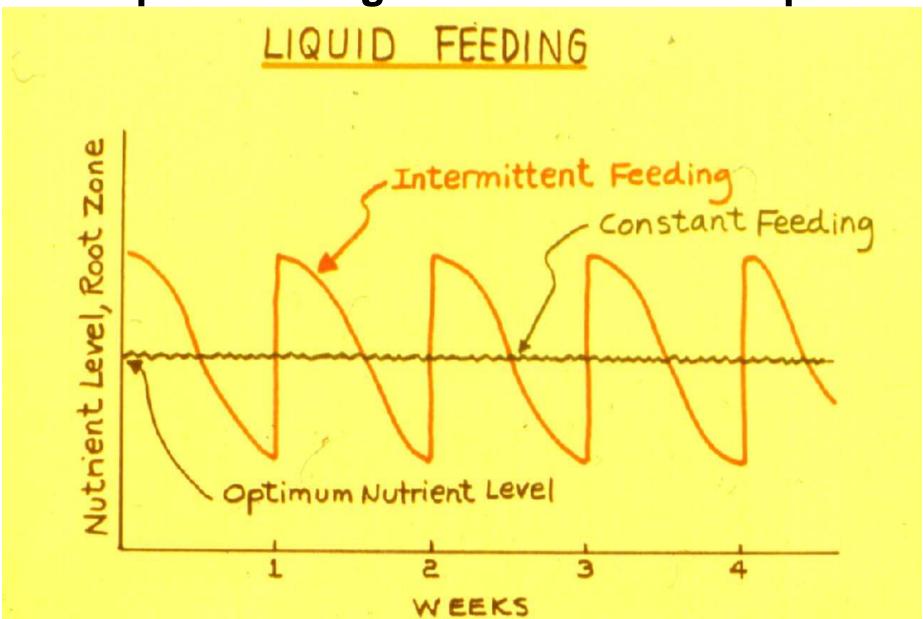
3. Liquid Feeding


- Use soluble fertilizers
- Constant feeding vs intermittent feeding

Fertilizer Application

Plant growth in influenced by a nutrient at lowest concentration as a denominator

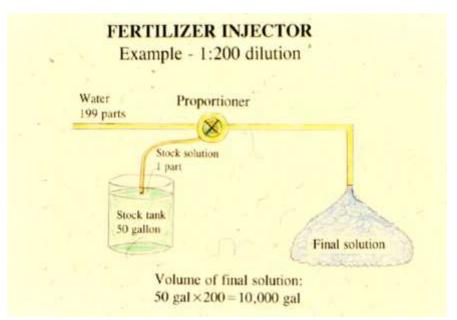
Amounts of Fertilizer Applied



Fertilizer Application

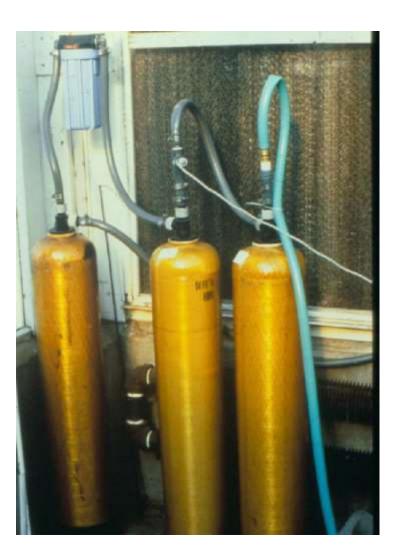
Liquid Feeding of Greenhouse Crops

Use of Soluble Fertilizers



Peter's 20-20-20 soluble fertilizer

Lack of soluble fertilizer in Mexico lowers the quality of crops grown in greenhouses


Fertilizer Injector



A two-head Injector (proportioner) used for greenhouse crops

Purification of Water

- Filtration
- Reverse Osmosis (RO water)
- Distillation (DI water)

The Ebb-and-Flow System

The Floor Irrigation System (Sub-irrigation)

Crops Grown with Sub-Irrigation System

