

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE - 35 DEPARTMENT OF MATHEMATICS

Tautology:

A statement formula which is true always governestave of the fourth values of the anderedual variables is called a tautology.

Eq:

PVTP & a tautology.

A statement formula which is always falso contra dection:

ge called a contradiction con abswellty.

Eg:

PATP is a contradiction.

Contegoncy:

A statement formula which is neither tautology non contendiction is called contigency.

P+> a 40 contigency.

. q is a tautology. J. Show that [PAQ)]-

p	9	+ TP+	PAG	TPA(PA9)	[7PA(PA9)]
T	T	F	Т	P V V	T
Т	F	F	F	F A	T
F	T	Т	F	F	Т
F	F	T	F	F	T

Ince all the entries In the Hesulting column is true, the given expression is a tautalogy.

2. Show that (PAQ) A 7 (PVQ) B a conteradiction.

P	A.	PAQ	PVQ	7 (PVQ)	(PAQ)A	T(PVa)
T	Т	Т	Т	(*F. (r))	4 DEF	MITCH
T	F	F	Т	F	F	any and a second
F	T	F	Т	F	F	
F	F	F	F	Т	£	M. 574 har 107 M. Tarreston 11 A. 107 May 12

Since at the entries in the Hesutting column are F, the given expression is a contradection.

Scanned with CamScanner

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE - 35 DEPARTMENT OF MATHEMATICS

3. Identify the given enepsies from

	7	[PVE	2) V	(TPV	70)	And the second second second second second		7(pva)
The second	Р	a	TP	70	PVA	7 (PVA)	70770	V(TPVTE)
The second	T	T	F	F	T	F	F	T
Company of the	T	F	F	T	Т	F	T	T
	F_	T	Т	F	T	F	T	T
3	F	F	T	T	F	T	T	

Since the entires on the lescuting column are t as well as f, the given expression is a

Enamine whothen [(AVQ) ==] (A) = [18 - 29.0 fautology

Eque valence:

Two Statement formulas p and e will equivalent of $p \leftrightarrow e$ is a tautology. It is denoted by $p \Leftrightarrow e$.

Show that the proposet cons one logically equivalence for the following. (i) $P \rightarrow Q \iff TPVQ$ (ii) $P \rightarrow (QVR) \iff (P \rightarrow Q) \lor (P \rightarrow R)$

P		⇒ TPV p → €a		TPVA	P→Q ⇔ TPVQ
T	T	Т	F	Т	T
T	F	F	F	F	Т
F	T	Т	T	T	T
F	F	ot r	T	AVOT I A	(axg) Table

some $(p \rightarrow a) \leftrightarrow (TPVa)$ is a tautalogy. Hence $(p \rightarrow a) \Leftrightarrow (TPVa)$

Scanned with CamScanner

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE - 35 DEPARTMENT OF MATHEMATICS

ii)	P	COVR) ↔ (P→	α, ·		(P+Q)	P+ (QVR)
P	Q	R	avr	$\Rightarrow (P \rightarrow P \rightarrow (Q \lor R))$	P-> Q	p→R	$(P \rightarrow R)$	(P+Q)V(P+R)
T	T	T	Т	T	Т	T	Т	T
<u>'</u> T	Т	F	T	T	Т.	F	Т	T
<u>-</u> Т	F	T	Т	T	F	T	Т	T
F	Т	T	T	Т	Т	T	Т	T
	-	C	6		(F	F	T

T

T

T

Hore $[P \rightarrow (Q \vee R)] \leftrightarrow (P \rightarrow Q) \vee (P \rightarrow R)$ is a lawfology.

Scanned with CamScanner

T

Hence