

SNS COLLEGE OF TECHNOLOGY An Autonomous Institution Coimbatore – 35

Accredited by NBA – AICTE and Accredited by NACC – UGC with 'A+ Grade Approved by AICTE , New Delhi and Affiliated to Anna University , Chennai.

DEPARTMENT OF AGRICULTURE ENGINEERING

19AGB401 - SOLAR AND WIND ENERGY

IV – YEAR VII SEMESTER

UNIT 1 – SOLAR ENERGY RADIATION AND SOLAR THERMAL COLLECTORS

19AGB401 SOLAR AND WIND ENERGY.---Ms.J.Hemalatha,AP/AGE

Outline

- What are flat plate collectors?
- Types of flat plate collectors
- Applications of flat plate collectors
- Thermal analysis of flat plate collectors

What Are Flat Plate Collectors?

- A flat plate collector is a heat exchanger that uses solar irradiation to heat a working fluid.
- The working fluid is usually liquid or air.
- The collector is a black surface that is placed at a convenient path of the sun.
- In flat plate collectors there is no optical concentration of sunlight and they are generally stationary.
- The outlet temperature capability is below 100 °C

What Are Flat Plate Collectors?

- A typical flat plate collector is a metal box with a glass or plastic cover (called glazing) on top and a dark-colored absorber plate on the bottom.
- The sides and bottom of the collector are usually insulated to minimize heat loss.

ABSORBER PLATE

- The plate is usually made of copper, steel, or plastic.
- The surface is covered with a black material of high absorptance.
- A selective coating can be used to maximize the absorptance of solar energy and minimizes the radiation emitted by plate.

FLOW PASSAGES

- The flow passages carry the working fluid through the collector.
- If the working fluid is a liquid, the flow passage is usually a tube that is attached to, or is a part of absorber plate.
- If the working fluid is air, the flow passages can have different configurations.

COVER PLATE (GLAZING)

- To reduce convective and radiative heat losses from the absorber, one or two transparent covers (glazing) are generally placed above the absorber plate.
- They usually be made from glass or plastic.

INSULATION

These are some materials such as fiberglass and they are placed at the back and sides of the collector to reduce heat losses.

ENCLOSURE

- A box that encloses the collector to:
 - Hold all the components together
 - Protect them from weather
 - Facilitate installation on a roof or appropriate frame.

Outline

- What are flat plate collectors?
- Types of flat plate collectors
- Applications of flat plate collectors
- Thermal analysis of flat plate collectors

WATER SYSTEMS

19AGB401 SOLAR AND WIND ENERGY.---Ms.J.Hemalatha,AP/AGE

AIR SYSTEMS

Outline

- What are flat plate collectors?
- Types of flat plate collectors
- Applications of flat plate collectors
- Thermal analysis of flat plate collectors

DOMESTIC HOT WATER

WATER HEATING

SPACE HEATING

Outline

- What are flat plate collectors?
- Types of flat plate collectors
- Applications of flat plate collectors
- Thermal analysis of flat plate collectors

Energy Absorbed by a Flat Plate Collector

- The irradiation incident on a collector (G_t) is not all absorbed.
- Once the irradiation penetrates the glass cover, part of it is absorbed by the collector, but another part is reflected back diffusely to the glass cover.
 - The glass cover then reflects diffusely to the absorber, and so on.

Energy Absorbed by a Flat Plate Collector

- The net energy absorbed by the collector can be expressed in terms of a quantity called ($\tau \alpha$).
 - Theoretically, the net energy absorbed by the collector per unit area is:
 - $S = G_t (\tau \alpha)_{av}$
 - Where $(\tau \alpha)_{av}$ is the average value of $(\tau \alpha)$

Energy Gain of a Flat Plate Collector

The useful energy gain of a flat plate collector is given by:

 $Q_{\rm u} = S \times A_{\rm c} - Q_{\rm loss}$

- $Q_{\rm loss}$ can be due to energy loss through:
- Top of the collector
- Bottom of collector
- Edges of collector

 Q_{loss} can be expressed as: $Q_{\text{loss}} = U_{\text{L}} A_{\text{c}} (T_{\text{p}} - T_{\text{a}})$ where,

- T_p : mean temperature of the absorber plate
- *T*_a: ambient temperature
- U_L: overall heat transfer coefficient based on collector area

Energy Loss of a Flat Plate Collector

 $U_{\rm L}$ consists of $U_{\rm t}$ (top), $U_{\rm b}$ (bottom), and $U_{\rm e}$ (edges)

Energy Loss of a Flat Plate Collector

 $U_{\rm t}$ involves the calculation of:

- $h_{c,p-g}$: convective heat transfer coefficient between plate and glazing
 - *h*_{r,p-g}: radiative heat transfer coefficient between plate and glazing
 - $h_{c,g-a}$: convective heat transfer coefficient between glazing and ambient air
 - $h_{\rm r,g-a}$: radiative heat transfer coefficient between glazing and ambient air

Calculations of all the components of U₄ is complicated.

Energy Loss of a Flat Plate Collector

*A relatively simple alternative formula can be used:

$$\begin{split} U_t &= \frac{1}{\frac{N_g}{\left[\frac{C}{T_p} - T_a\right]^{0.33} + \frac{1}{h_w}}} \\ &+ \frac{\sigma(T_p^2 + T_a^2)(T_p + T_a)}{\frac{1}{\varepsilon_p + 0.05N_g(1 - \varepsilon_p)} + \frac{2N_g + f - 1}{\varepsilon_g} - N_g} \\ f &= (1 - 0.04h_w + 0.0005h_w^2)(1 + 0.091N_g) \\ C &= 365.9 \left(1 - 0.00883 \ \alpha + 0.0001298 \ \alpha^2\right) \\ h_w &= \frac{8.6V^{0.6}}{L^{0.4}} \text{ igage of solar and wind energy.--Ms_J.Hemaladha,AP/AGE} \end{split}$$

Energy Loss of a Flat Plate Collector

- N_g = number of glass covers
- T_{p} = absorber plate temperature
- T_a = ambient temperature
- σ = Stefan-Boltzmann constant
- ε_p = emittance of absorber plate
- ε_g = emittance of glazing
- α = Tilt angle
- V = Wind velocity
- L = Collector length

Energy Loss of a Flat Plate Collector

• $U_{\rm b}$ can be found from:

$$U_b = \frac{1}{\frac{t_b}{k_b} + \frac{1}{h_{c,b-a}}}$$

Where,

- t_b = thickness of back insulation (m).
- k_b = conductivity of back insulation (W/m-K).

 $h_{c, b-a}$ = convection heat loss coefficient from back to ambient (W/m²-K).

Energy Loss of a Flat Plate Collector

 $U_{\rm e}$ can be found from:

$$U_e = \frac{1}{\frac{t_e}{k_e} + \frac{1}{h_{c,e-a}}}$$

Where,

- = thickness of edge insulation (m). t_e k_e
 - = conductivity of edge insulation (W/m-K).

 $h_{c, e-a}$ = convection heat loss coefficient from edge to ambient (W/m²-K).

Energy Gain of a Flat Plate Collector

The useful energy gain of a flat plate collector is given by:

$$Q_{\rm u} = S \times A_{\rm c} - Q_{\rm loss}$$

Expanding all terms,

$$Q_u = A_c [G_t(\tau \alpha) - U_L(T_p - T_a)]$$

The useful energy gained by the collector is transferred completely to the working fluid. Therefore,

$$Q_u = A_c [G_t(\tau \alpha) - U_L(T_p - T_a)] = \dot{m}c_p [T_o - T_i]$$

Where,

- *T_i*: fluid inlet temperature
- T_o: fluid outlet temperature

 F_R

$$Q_u = A_c [G_t(\tau \alpha) - U_L(T_p - T_a)] = \dot{m}c_p [T_o - T_i]$$

- Calculating T_p accurately is difficult.
- It is more convenient to express Q_u in terms of the fluid temperatures.
- A useful definition is the heat removal factor (F_R):

Actual output

Output for plate temperature = Fluid inlet temperature

🛺 Heat Removal Factor

• By using the heat removal factor (F_R), the useful energy gain equation $Q_u \underset{c}{\text{becAm}} [G_t(\tau \alpha) - U_L(T_i - T_a)]$

- F_R depends on many factors, and it can be found analytically.
- F_R can also be found experimentally.

Collector Efficiency

- Collector efficiency (η) is defined as the:
- η = useful energy gain / irradiation incident on the collector

$$\eta = \frac{Q_u}{G_t A_c}$$

This equation can be expressed in terms of F_R :

$$\eta = F_R \left[(\tau \alpha) - \frac{U_L (T_i - T_a)}{G_t} \right]$$

• The efficiency equation can be rearranged as follows:

$$\eta = F_R(r\alpha) - F_R U_L \frac{T - T_a}{G_t}$$

- If changes in F_R and U_L are small, the equation above represents a straight line, where:
 - $(T_i T_a) / G_t$ is the independent variable
 - η is the dependent variable
 - $F_R(\tau \alpha)$ is the intercept
 - (- $F_R U_L$) is the slope

Collector Efficiency

19AGB401 SOLAR AND WIND ENERGY.---Ms.J.Hemalatha,AP/AGE