Reg.No:							
---------	--	--	--	--	--	--	--

SNS College of Technology, Coimbatore - 35. (An Autonomous Institution) Internal Assessment -II Academic Year 2022-2023(Even) Second Semester Department of Mathematics 19MAB102- Integral Calculus & Laplace Transforms

Time: 1.30 Hours

1.

2.

3.

4.

5.

6.

Maximum Marks: 50

	PART – A (5 x 2 = 10 MARKS) ANSWER ALL QUESTIONS		BLO OMS
	State Stoke's theorem.	CO2	(R)
	Find $\nabla \cdot \vec{F}$ for the vector point function $\vec{F} = xz^3\vec{\iota} - 2x^2yz\vec{j} + 2yz^4\vec{k}$ at the point (1,-1,1).	CO2	(U)
	Lineate the conditions necessary and sufficient condition for a function to be analytic.	CO3	(R)
	Determine whether the function $w = 2xy + i(x^2 + y^2)$ is analytic or not.	CO3	(U)
	Obtain the fixed points of the transformation $w = \frac{2z-5}{z+4}$	CO3	(U)
	PART –B (2 x 13 = 26 MARKS)		
	ANSWER ALL QUESTIONS		
a)	Verify Stoke's Theorem for the vector $\vec{F} = (x^2 - y^2)\vec{i} + 2xy\vec{j}$ in the		(App)
	rectangular region $x = 0$; $y = 0$; $x = a$; $y = b$		(13)
	(or)		
b)(i)	Show that the function $u = x^3 + x^2 - 3xy^2 + 2xy - y^2$ is harmonic and hence find the analytic function.	CO3	(App) (8)
(ii)			
	Find the bilinear transformation that maps $0,1,\infty$ onto $i, 1, -i$	CO3	(An) (5)

a)(i) If f(z) = u + iv is an regular function of z in the domain D, then show that 7.

(ii)

8.

$$\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] |f(z)|^2 = 4 |f'(z)|^2$$
(An)
(CO3 (10)

(An)

(ii)Interpret the critical points of the transformation
$$w = z + \frac{1}{z}$$
CO3(An)
(3)(ii)Prove that $u = \frac{1}{2} \log (x^2 + y^2)$ is a harmonic function and establish its
Harmonic Conjugate.CO3(App)
(8)(ii)Identify the image of $|z - 2i| = 2$ under the translation $w = \frac{1}{z}$ CO3(App)
(5)a)Verify Gauss divergence theorem for the vector $\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$ over the rectangular parallelepiped $0 \le x \le a; 0 \le y \le (14)$
(14)CO3(App)
(14)b)Discuss in detail about the Applications of flow problems and categorize
using analytic functions.CO3(App)
(14)R/U: Remember/ UnderstandApp: ApplyAn: AnalyzeE: EvaluateC: Create

2

Prepared by

Verified by

Dean (S & H)