

SNS College of Technology, Coimbatore - 35. (An Autonomous Institution)
 Internal Assessment -II
 Academic Year 2022-2023(Even)
 Second Semester
 Department of Mathematics
 19MAB102- Integral Calculus \& Laplace Transforms

1.

State Stoke's theorem
CO2
2. Find $\nabla . \vec{F}$ for the vector point function $\vec{F}=x z^{3} \vec{\imath}-2 x^{2} y z \vec{\jmath}+2 y z^{4} \vec{k}$ at the CO2 point ($1,-1,1$).
3.

Lineate the conditions necessary and sufficient condition for a function to be CO3 analytic.
4.

Determine whether the function $w=2 x y+i\left(x^{2}+y^{2}\right)$ is analytic or not.
CO3
5. Obtain the fixed points of the transformation $w=\frac{2 z-5}{z+4}$

CO3

PART-B (2 x 13 = 26 MARKS)
ANSWER ALL QUESTIONS
a)
6.

Verify Stoke's Theorem for the vector $\vec{F}=\left(x^{2}-y^{2}\right) \vec{\imath}+2 x y \vec{\jmath}$ in the \quad CO2 rectangular region $x=0 ; y=0 ; x=a ; y=b$
(or)
b)(i)

Show that the function $u=x^{3}+x^{2}-3 x y^{2}+2 x y-y^{2}$ is harmonic and
CO3 hence find the analytic function.
(ii)

Find the bilinear transformation that maps $0,1, \infty$ onto $i, 1,-i$
a)(i) If $f(z)=u+i v$ is an regular function of z in the domain D, then show that
7. $\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right]|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
(ii) Interpret the critical points of the transformation $w=z+\frac{1}{z}$ CO 3
(or)
b)(i) Prove that $\mathrm{u}=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is a harmonic function and establish its Harmonic Conjugate.
(ii) Identify the image of $|\mathrm{z}-2 \mathrm{i}|=2$ under the translation $\mathrm{w}=\frac{1}{\mathrm{z}}$ CO 3
a) Verify Gauss divergence theorem for the vector $\vec{F}=\left(x^{2}-y z\right) \vec{\imath}+\left(y^{2}-\right.$ 8.

$$
\begin{align*}
& z x) \vec{\jmath}+\left(z^{2}-x y\right) \vec{k} \text { over the rectangular parallelepiped } 0 \leq x \leq a ; 0 \leq y \leq \tag{14}\\
& b ; 0 \leq z \leq c . \\
& \text { (or) } \\
& \text { b) } \\
& \text { Discuss in detail about the Applications of flow problems and categorize } \tag{14}\\
& \text { using analytic functions. } \tag{14}
\end{align*}
$$

C: Create

