| Reg.No: |  |  |  |  |
|---------|--|--|--|--|



## SNS College of Technology, Coimbatore-35.

(An Autonomous Institution)
Internal Assessment -I
Academic Year 2022-2023 (Even)
Second Semester
(Common to All Branches)



Department of Mathematics
19MAB102-Integral Calculus & Laplace Transforms

Time: 1.30 Hours Maximum Marks: 50

|    |       | PART – A (5 x 2 = 10 MARKS)<br>ANSWER ALL QUESTIONS                                                           | СО  | Blooms        |
|----|-------|---------------------------------------------------------------------------------------------------------------|-----|---------------|
| 1. |       | Evaluate $\int_{0}^{1} \int_{0}^{2} y^{2}x  dx  dy$                                                           | CO1 | (Rem)         |
| 2. |       | Evaluate $\iint_{0}^{1} \iint_{0}^{2} xyz  dx  dy  dz$                                                        | CO1 | (Und)         |
| 3. |       | Find the gradient of $\varphi = 3x^2y - y^3z^2$ at (1,-2,-1).                                                 | CO2 | (Und)         |
| 4. |       | If $\vec{F} = xyz\vec{i} + 3x^2y\vec{j} + (xz^2 - y^2z)\vec{k}$ then find $\nabla \cdot \vec{F}$ at (1,2,-1). | CO2 | (Und)         |
| 5. |       | Define solenoidal and irrotational vectors.                                                                   | CO2 | (Rem)         |
|    |       | PART -B (13+13+14 = 40 MARKS) ANSWER ALL QUESTIONS                                                            |     |               |
| 6. | a) i) | Evaluate $\int_{0}^{1} \int_{1}^{2} xy(x+y)dydx.$                                                             | CO1 | (Und)<br>(6)  |
|    | ii)   | Find the area of the circle $x^2 + y^2 = a^2$ using double integration.                                       | CO1 | (App)<br>(7)  |
|    |       | (OR)                                                                                                          |     |               |
|    | b)    | Change the order of integration and evaluate $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$                   | CO1 | (Ana)<br>(13) |
|    |       |                                                                                                               |     |               |

| 7.  | a) i)        |                                                                                                       | CO2 | (App)         |
|-----|--------------|-------------------------------------------------------------------------------------------------------|-----|---------------|
| ' • | <i>a)</i> 1) | Find 'a' and 'b' such that the surfaces $ax^2 - byz = (a + 2)x$ and                                   |     | (6)           |
|     |              | $4x^2y + z^3 = 4$ cut orthogonally at the point $(1,-1,2)$ .                                          |     |               |
|     |              |                                                                                                       |     |               |
|     | ii)          | Durang that $\vec{E} = (x_1^2 \cos x_1 + x_2^3)\vec{E} + (2x_1\sin x_1 + 4)\vec{E} + 2x_1-2\vec{E}$ : |     | ( )           |
|     |              | Prove that $\vec{F} = (y^2 \cos x + z^3)\vec{i} + (2y \sin x - 4)\vec{j} + 3xz^2 \vec{k}$ is          | CO2 | (App)         |
|     |              | irrotational vector and find the scalar potential such that $\vec{F} = \nabla \emptyset$              |     | (7)           |
|     |              |                                                                                                       |     |               |
|     |              | (OR)                                                                                                  |     |               |
|     |              |                                                                                                       | CO2 | (App)         |
|     | b) i)        | Using Green's theorem , evaluate $\int_{C} (2x^2 - y^2) dx + (x^2 + y^2) dy$ where                    |     | (App)<br>(7)  |
|     |              | C is the boundary enclosed by the lines $x = 0$ , $y = 0$ , $x = 2$ and $y = 3$                       |     | (,)           |
|     | ii)          | Find the unit normal to the surface $x^2 + 2y^2 + z^2 = 7$ at (1,0,3).                                | CO2 | (App)<br>(6)  |
| 8.  | a)           | Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz  dz  dy  dx$           | CO1 | (App)<br>(14) |
|     |              | (OR)                                                                                                  |     |               |
|     | b)           | Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple                                    | CO1 | (Ana)         |
|     |              | integration.                                                                                          |     | (14)          |
|     |              | into Station.                                                                                         |     |               |

Rem/Und: Remember/ Understand App: Apply Ana: Analyze Eva: Evaluate

Cre: Create

Prepared by Verified by Dean(S&H)