
SNS COLLEGE OF TECHNOLOGY
(an autonomous institution)

Coimbatore - 35

19CST102 - OBJECT ORIENTED PROGRAMMING

I YEAR / II SEMESTER

UNIT IV – MULTITHREADING IN JAVA

TOPIC : THREADS SYNCHRONIZATION

Presented by:

Rithika M

(713522CS127)

Rohini R

(713522CS128)

Guided by :

Mr.Selvakumar. N

AP/CSE

THREADS :

• Threads allows a program to operate more efficiently by doing

multiple things at the same time.

• Threads can be used to perform complicated tasks in the background

without interrupting the main program.

SYNCHRONIZATION :

• Synchronization in Java is the capability to control the access of multiple

threads to any shared resource.

• Java Synchronization is better option where we want to allow only one

thread to access the shared resource.

TYPES OF SYNCHRONIZATION :

MUTUAL EXCLUSIVE :
Mutual Exclusive helps keep threads from interfering

with one another while sharing data. It can be achieved by using

the following three ways

• Synchronized Method

• Synchronized Block

• Static Synchronization

SYNCHRONIZED METHOD :

• If you declare any method as synchronized, it is known as synchronized method.

• Synchronized method is used to lock an object for any shared resource.

• When a thread invokes a synchronized method, it automatically acquires the lock for

that object and releases it when the thread completes its task.

Example program without using synchronization :

class Table{

void printTable(int n){//method not synchronized

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(400);

 }catch(Exception e){System.out.println(e);}

 }

 }

}

 class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

}

}

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

class TestSynchronization1{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

Output:

5

100

10

200

15

300

20

400

25

500

Example program using synchronization :

class Table{

Synchronized void printTable(int n){//method

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(400);

 }catch(Exception e){System.out.println(e);}

 }

 }

}

 class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

Output :

 5

 10

 15

 20

 25

 100

 200

 300

 400

 500

Synchronized block :

• Synchronized block can be used to perform synchronization on any specific

resource of the method.

• Suppose we have 50 lines of code in our method, but we want to synchronize only

5 lines, in such cases, we can use synchronized block.

• If we put all the codes of the method in the synchronized block, it will work same

as the synchronized method.

Example of Synchronized Block :
class Table

{

 void printTable(int n){

 synchronized(this){//synchronized block

 for(int i=1;i<=5;i++){

System.out.println(n*i);

 try{

 Thread.sleep(400);

 }catch(Exception e)

System.out.println(e);}

 }

 }

 }//end of the method

}

 class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

}

 }

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

public class TestSynchronizedBlock1{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

Output:

5

10

15

20

25

100

200

300

400

500

Static Synchronization :
If you make any static method as

synchronized, the lock will be on the class not on

object.

Problem without static synchronization
Suppose there are two objects of a shared class

(e.g. Table) named object1 and object2. In case of

synchronized method and synchronized block

there cannot be interference between t1 and t2 or

t3 and t4 because t1 and t2 both refers to a

common object that have a single lock. But there

can be interference between t1 and t3 or t2 and t4

because t1 acquires another lock and t3 acquires

another lock. We don't want interference between

t1 and t3 or t2 and t4. Static synchronization

solves this problem.

	Slide 1: SNS COLLEGE OF TECHNOLOGY (an autonomous institution) Coimbatore - 35
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

