

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

19EET103 / ELECTRIC CIRCUITS AND ELECTRON DEVICES

UNIT 4- ELECTRONIC DEVICES AND APPLICATIONS

ET103 / ECED

Dr.MVP / Professor & Senior Innovator (IHub)

Liquid Crystal Display

Introduction

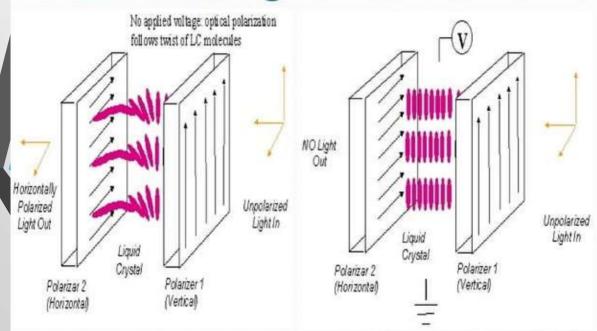
- A Liquid Crystal Display (LCD) is a thin, flat panel display device used for electronically displaying information such as text, images and moving picture.
- LCD is used in Computer monitors, Televisions, Instrument panels, Gaming devices etc.
- Polarization of lights is used here to display objects.

Why LCD?

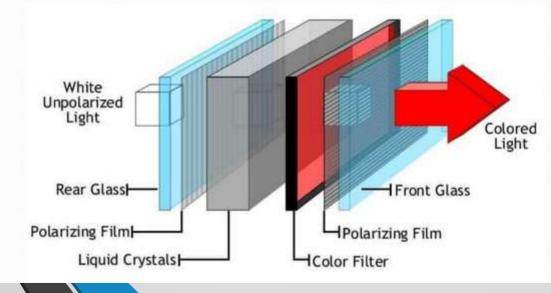
- Smaller size —LCDs occupy approximately 60 percent less space than CRT displays an important feature when office space is limited.
- Lower power consumption—LCDs typically consume about half the power and emit much less heat than CRT displays.
- Lighter weight —LCDs weigh approximately 70 percent less than CRT displays of comparable size.
- No electromagnetic fields —LCDs do not emit electromagnetic fields and are not susceptible to them. Thus, they are suitable for use in areas where CRTs cannot be used.
- Longer life —LCDs have a longer useful life than CRTs.

Liquid crystals

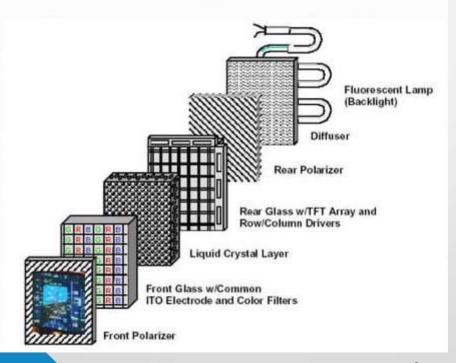
 Two liquid crystal materials which are important in display technology are nematic and smectic.



Nematic phase

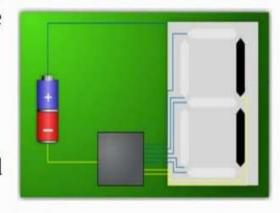


smectic phase


LCD working

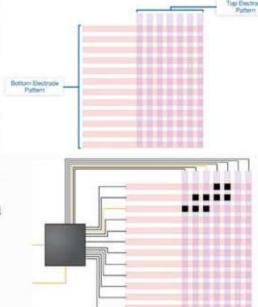
LCD working

LCD working

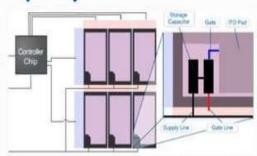


Types of LCD

- Direct Address Display
- Passive Matrix Display
- Active Matrix Display

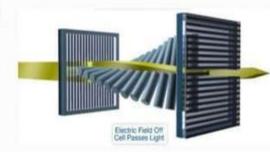

Direct Address Display

- When the display include limited variable components such as
 - Watches
 - Calculators
- Simple electronics is used to control the components


Passive Matrix Display

- Passive matrix display has
 - Rows of electrodes on one piece of glass.
 - Columns of electrodes on the opposing piece of glass.
 - Complex electrical waveform control the voltage differential at the intersection of the electrodes.
- The intersection of the columns and rows are the pixels

Active Matrix Display


- Allow very high resolution
- Each sub-pixel is individually controlled by an isolated thin-film transistor (TFT).
- It allows the electrical signal for each sub-pixel to avoid influencing adjacent elements.
- The TFT is patterned into the glass layer

A display with 1024x768 resolution Include 1024x768x3 = 2,359,296 sub-pixels

Twisted Nematic (TN) Display

- Is the most common LCD Display.
- The two alignments layer for the liquid crystal material are orthogonal.
- The light entering the polarize panel rotates by the twist in the liquid crystal and allowing it to pass through the second polarize

Disadvantages of Passive Matrix Display

- As more rows and columns are added the range of the allowed voltage is reduced.
 - At high range adjacent channels interferes
 - Range limit reduces contrast
 - Limit the types of useful liquid crystal.
- It is usually limited to about 50 rows
- Twisted nematic (TN) Display work best with large voltage variation.
 - It can not be used in Passive Matrix Display

Advantage of Active Matrix Display

- Higher sizes
- Higher contrast
- Higher gray scale
- Higher resolution
- Higher viewing angle
- Faster response. Eliminates "ghosting"
- Better control of the color

Advantage of Twisted Nematic Display

- Shortest response time.
- Higher brightness.
- They are cheap to manufacture, resulting in low prices for end user.