
19ITT101-PROGRAMMING IN C AND DATA STRUCTURE 

N.SELVAKUMAR/AP/CSE CDS 

Classification of Data Structures 

A Data Structure delivers a structured set of variables related to each other in various ways. It 

forms the basis of a programming tool that signifies the relationship between the data elements 

and allows programmers to process the data efficiently. 

AD 

We can classify Data Structures into two categories: 

1. Primitive Data Structure 

2. Non-Primitive Data Structure 

The following figure shows the different classifications of Data Structures. 

 

Figure 2: Classifications of Data Structures 

Primitive Data Structures 

1. Primitive Data Structures are the data structures consisting of the numbers and the 

characters that come in-built into programs. 

2. These data structures can be manipulated or operated directly by machine-level 

instructions. 

3. Basic data types like Integer, Float, Character, and Boolean come under the 

Primitive Data Structures. 

4. These data types are also called Simple data types, as they contain characters that can't 

be divided further 

Non-Primitive Data Structures 



19ITT101-PROGRAMMING IN C AND DATA STRUCTURE 

N.SELVAKUMAR/AP/CSE CDS 

1. Non-Primitive Data Structures are those data structures derived from Primitive Data 

Structures. 

2. These data structures can't be manipulated or operated directly by machine-level 

instructions. 

3. The focus of these data structures is on forming a set of data elements that is 

either homogeneous (same data type) or heterogeneous (different data types). 

4. Based on the structure and arrangement of data, we can divide these data structures into 

two sub-categories - 

1. Linear Data Structures 

2. Non-Linear Data Structures 

Linear Data Structures 

A data structure that preserves a linear connection among its data elements is known as a Linear 

Data Structure. The arrangement of the data is done linearly, where each element consists of 

the successors and predecessors except the first and the last data element. However, it is not 

necessarily true in the case of memory, as the arrangement may not be sequential. 

Based on memory allocation, the Linear Data Structures are further classified into two types: 

AD 

1. Static Data Structures: The data structures having a fixed size are known as Static 

Data Structures. The memory for these data structures is allocated at the compiler time, 

and their size cannot be changed by the user after being compiled; however, the data 

stored in them can be altered. 

The Array is the best example of the Static Data Structure as they have a fixed size, 

and its data can be modified later. 

2. Dynamic Data Structures: The data structures having a dynamic size are known as 

Dynamic Data Structures. The memory of these data structures is allocated at the run 

time, and their size varies during the run time of the code. Moreover, the user can 

change the size as well as the data elements stored in these data structures at the run 

time of the code. 

Linked Lists, Stacks, and Queues are common examples of dynamic data structures 

Types of Linear Data Structures 

The following is the list of Linear Data Structures that we generally use: 

1. Arrays 



19ITT101-PROGRAMMING IN C AND DATA STRUCTURE 

N.SELVAKUMAR/AP/CSE CDS 

An Array is a data structure used to collect multiple data elements of the same data type into 

one variable. Instead of storing multiple values of the same data types in separate variable 

names, we could store all of them together into one variable. This statement doesn't imply that 

we will have to unite all the values of the same data type in any program into one array of that 

data type. But there will often be times when some specific variables of the same data types 

are all related to one another in a way appropriate for an array. 

An Array is a list of elements where each element has a unique place in the list. The data 

elements of the array share the same variable name; however, each carries a different index 

number called a subscript. We can access any data element from the list with the help of its 

location in the list. Thus, the key feature of the arrays to understand is that the data is stored in 

contiguous memory locations, making it possible for the users to traverse through the data 

elements of the array using their respective indexes. 

 

Figure 3. An Array 

Arrays can be classified into different types: 

a. One-Dimensional Array: An Array with only one row of data elements is known as a 

One-Dimensional Array. It is stored in ascending storage location. 

b. Two-Dimensional Array: An Array consisting of multiple rows and columns of data 

elements is called a Two-Dimensional Array. It is also known as a Matrix. 

c. Multidimensional Array: We can define Multidimensional Array as an Array of 

Arrays. Multidimensional Arrays are not bounded to two indices or two dimensions as 

they can include as many indices are per the need. 

Some Applications of Array: 

a. We can store a list of data elements belonging to the same data type. 

b. Array acts as an auxiliary storage for other data structures. 

c. The array also helps store data elements of a binary tree of the fixed count. 

d. Array also acts as a storage of matrices. 

2. Linked Lists 

A Linked List is another example of a linear data structure used to store a collection of data 

elements dynamically. Data elements in this data structure are represented by the Nodes, 



19ITT101-PROGRAMMING IN C AND DATA STRUCTURE 

N.SELVAKUMAR/AP/CSE CDS 

connected using links or pointers. Each node contains two fields, the information field consists 

of the actual data, and the pointer field consists of the address of the subsequent nodes in the 

list. The pointer of the last node of the linked list consists of a null pointer, as it points to 

nothing. Unlike the Arrays, the user can dynamically adjust the size of a Linked List as per the 

requirements. 

 

Figure 4. A Linked List 

Linked Lists can be classified into different types: 

a. Singly Linked List: A Singly Linked List is the most common type of Linked List. 

Each node has data and a pointer field containing an address to the next node. 

b. Doubly Linked List: A Doubly Linked List consists of an information field and two 

pointer fields. The information field contains the data. The first pointer field contains 

an address of the previous node, whereas another pointer field contains a reference to 

the next node. Thus, we can go in both directions (backward as well as forward). 

c. Circular Linked List: The Circular Linked List is similar to the Singly Linked List. 

The only key difference is that the last node contains the address of the first node, 

forming a circular loop in the Circular Linked List. 

Some Applications of Linked Lists: 

a. The Linked Lists help us implement stacks, queues, binary trees, and graphs of 

predefined size. 

b. We can also implement Operating System's function for dynamic memory 

management. 

c. Linked Lists also allow polynomial implementation for mathematical operations. 

d. We can use Circular Linked List to implement Operating Systems or application 

functions that Round Robin execution of tasks. 

e. Circular Linked List is also helpful in a Slide Show where a user requires to go back to 

the first slide after the last slide is presented. 

f. Doubly Linked List is utilized to implement forward and backward buttons in a browser 

to move forward and backward in the opened pages of a website. 



19ITT101-PROGRAMMING IN C AND DATA STRUCTURE 

N.SELVAKUMAR/AP/CSE CDS 

3. Stacks 

A Stack is a Linear Data Structure that follows the LIFO (Last In, First Out) principle that 

allows operations like insertion and deletion from one end of the Stack, i.e., Top. Stacks can 

be implemented with the help of contiguous memory, an Array, and non-contiguous memory, 

a Linked List. Real-life examples of Stacks are piles of books, a deck of cards, piles of money, 

and many more. 

 

Figure 5. A Real-life Example of Stack 

The above figure represents the real-life example of a Stack where the operations are performed 

from one end only, like the insertion and removal of new books from the top of the Stack. It 

implies that the insertion and deletion in the Stack can be done only from the top of the Stack. 

We can access only the Stack's tops at any given time. 

The primary operations in the Stack are as follows: 

a. Push: Operation to insert a new element in the Stack is termed as Push Operation. 

b. Pop: Operation to remove or delete elements from the Stack is termed as Pop 

Operation. 



19ITT101-PROGRAMMING IN C AND DATA STRUCTURE 

N.SELVAKUMAR/AP/CSE CDS 

 

Figure 6. A Stack 

Some Applications of Stacks: 

a. The Stack is used as a Temporary Storage Structure for recursive operations. 

b. Stack is also utilized as Auxiliary Storage Structure for function calls, nested 

operations, and deferred/postponed functions. 

c. We can manage function calls using Stacks. 

d. Stacks are also utilized to evaluate the arithmetic expressions in different programming 

languages. 

e. Stacks are also helpful in converting infix expressions to postfix expressions. 

f. Stacks allow us to check the expression's syntax in the programming environment. 

g. We can match parenthesis using Stacks. 

h. Stacks can be used to reverse a String. 

i. Stacks are helpful in solving problems based on backtracking. 

j. We can use Stacks in depth-first search in graph and tree traversal. 

k. Stacks are also used in Operating System functions. 

l. Stacks are also used in UNDO and REDO functions in an edit. 

4. Queues 



19ITT101-PROGRAMMING IN C AND DATA STRUCTURE 

N.SELVAKUMAR/AP/CSE CDS 

A Queue is a linear data structure similar to a Stack with some limitations on the insertion and 

deletion of the elements. The insertion of an element in a Queue is done at one end, and the 

removal is done at another or opposite end. Thus, we can conclude that the Queue data structure 

follows FIFO (First In, First Out) principle to manipulate the data elements. Implementation of 

Queues can be done using Arrays, Linked Lists, or Stacks. Some real-life examples of Queues 

are a line at the ticket counter, an escalator, a car wash, and many more. 

 

Figure 7. A Real-life Example of Queue 

The above image is a real-life illustration of a movie ticket counter that can help us understand 

the Queue where the customer who comes first is always served first. The customer arriving 

last will undoubtedly be served last. Both ends of the Queue are open and can execute different 

operations. Another example is a food court line where the customer is inserted from the rear 

end while the customer is removed at the front end after providing the service they asked for. 

The following are the primary operations of the Queue: 

a. Enqueue: The insertion or Addition of some data elements to the Queue is called 

Enqueue. The element insertion is always done with the help of the rear pointer. 

b. Dequeue: Deleting or removing data elements from the Queue is termed Dequeue. The 

deletion of the element is always done with the help of the front pointer. 



19ITT101-PROGRAMMING IN C AND DATA STRUCTURE 

N.SELVAKUMAR/AP/CSE CDS 

 

Figure 8. A Queue 

Some Applications of Queues: 

a. Queues are generally used in the breadth search operation in Graphs. 

b. Queues are also used in Job Scheduler Operations of Operating Systems, like a 

keyboard buffer queue to store the keys pressed by users and a print buffer queue to 

store the documents printed by the printer. 

c. Queues are responsible for CPU scheduling, Job scheduling, and Disk Scheduling. 

d. Priority Queues are utilized in file-downloading operations in a browser. 

e. Queues are also used to transfer data between peripheral devices and the CPU. 

f. Queues are also responsible for handling interrupts generated by the User Applications 

for the CPU. 

Non-Linear Data Structures 

Non-Linear Data Structures are data structures where the data elements are not arranged in 

sequential order. Here, the insertion and removal of data are not feasible in a linear manner. 

There exists a hierarchical relationship between the individual data items. 

Types of Non-Linear Data Structures 

The following is the list of Non-Linear Data Structures that we generally use: 

1. Trees 

A Tree is a Non-Linear Data Structure and a hierarchy containing a collection of nodes such 

that each node of the tree stores a value and a list of references to other nodes (the "children"). 

The Tree data structure is a specialized method to arrange and collect data in the computer to 

be utilized more effectively. It contains a central node, structural nodes, and sub-nodes 

connected via edges. We can also say that the tree data structure consists of roots, branches, 

and leaves connected. 



19ITT101-PROGRAMMING IN C AND DATA STRUCTURE 

N.SELVAKUMAR/AP/CSE CDS 

 

Figure 9. A Tree 

Trees can be classified into different types: 

a. Binary Tree: A Tree data structure where each parent node can have at most two 

children is termed a Binary Tree. 

b. Binary Search Tree: A Binary Search Tree is a Tree data structure where we can easily 

maintain a sorted list of numbers. 

c. AVL Tree: An AVL Tree is a self-balancing Binary Search Tree where each node 

maintains extra information known as a Balance Factor whose value is either -1, 0, or 

+1. 

d. B-Tree: A B-Tree is a special type of self-balancing Binary Search Tree where each 

node consists of multiple keys and can have more than two children. 

Some Applications of Trees: 

a. Trees implement hierarchical structures in computer systems like directories and file 

systems. 

b. Trees are also used to implement the navigation structure of a website. 

c. We can generate code like Huffman's code using Trees. 

d. Trees are also helpful in decision-making in Gaming applications. 

e. Trees are responsible for implementing priority queues for priority-based OS 

scheduling functions. 



19ITT101-PROGRAMMING IN C AND DATA STRUCTURE 

N.SELVAKUMAR/AP/CSE CDS 

f. Trees are also responsible for parsing expressions and statements in the compilers of 

different programming languages. 

g. We can use Trees to store data keys for indexing for Database Management System 

(DBMS). 

h. Spanning Trees allows us to route decisions in Computer and Communications 

Networks. 

i. Trees are also used in the path-finding algorithm implemented in Artificial Intelligence 

(AI), Robotics, and Video Games Applications. 

2. Graphs 

A Graph is another example of a Non-Linear Data Structure comprising a finite number of 

nodes or vertices and the edges connecting them. The Graphs are utilized to address problems 

of the real world in which it denotes the problem area as a network such as social networks, 

circuit networks, and telephone networks. For instance, the nodes or vertices of a Graph can 

represent a single user in a telephone network, while the edges represent the link between them 

via telephone. 

The Graph data structure, G is considered a mathematical structure comprised of a set of 

vertices, V and a set of edges, E as shown below: 

G = (V,E) 

 

Figure 10. A Graph 



19ITT101-PROGRAMMING IN C AND DATA STRUCTURE 

N.SELVAKUMAR/AP/CSE CDS 

The above figure represents a Graph having seven vertices A, B, C, D, E, F, G, and ten edges 

[A, B], [A, C], [B, C], [B, D], [B, E], [C, D], [D, E], [D, F], [E, F], and [E, G]. 

Depending upon the position of the vertices and edges, the Graphs can be classified into 

different types: 

a. Null Graph: A Graph with an empty set of edges is termed a Null Graph. 

b. Trivial Graph: A Graph having only one vertex is termed a Trivial Graph. 

c. Simple Graph: A Graph with neither self-loops nor multiple edges is known as a 

Simple Graph. 

d. Multi Graph: A Graph is said to be Multi if it consists of multiple edges but no self-

loops. 

e. Pseudo Graph: A Graph with self-loops and multiple edges is termed a Pseudo Graph. 

f. Non-Directed Graph: A Graph consisting of non-directed edges is known as a Non-

Directed Graph. 

g. Directed Graph: A Graph consisting of the directed edges between the vertices is 

known as a Directed Graph. 

h. Connected Graph: A Graph with at least a single path between every pair of vertices 

is termed a Connected Graph. 

i. Disconnected Graph: A Graph where there does not exist any path between at least 

one pair of vertices is termed a Disconnected Graph. 

j. Regular Graph: A Graph where all vertices have the same degree is termed a Regular 

Graph. 

k. Complete Graph: A Graph in which all vertices have an edge between every pair of 

vertices is known as a Complete Graph. 

l. Cycle Graph: A Graph is said to be a Cycle if it has at least three vertices and edges 

that form a cycle. 

m. Cyclic Graph: A Graph is said to be Cyclic if and only if at least one cycle exists. 

n. Acyclic Graph: A Graph having zero cycles is termed an Acyclic Graph. 

o. Finite Graph: A Graph with a finite number of vertices and edges is known as a Finite 

Graph. 

p. Infinite Graph: A Graph with an infinite number of vertices and edges is known as an 

Infinite Graph. 

q. Bipartite Graph: A Graph where the vertices can be divided into independent sets A 

and B, and all the vertices of set A should only be connected to the vertices present in 

set B with some edges is termed a Bipartite Graph. 



19ITT101-PROGRAMMING IN C AND DATA STRUCTURE 

N.SELVAKUMAR/AP/CSE CDS 

r. Planar Graph: A Graph is said to be a Planar if we can draw it in a single plane with 

two edges intersecting each other. 

s. Euler Graph: A Graph is said to be Euler if and only if all the vertices are even degrees. 

t. Hamiltonian Graph: A Connected Graph consisting of a Hamiltonian circuit is known 

as a Hamiltonian Graph. 

Some Applications of Graphs: 

a. Graphs help us represent routes and networks in transportation, travel, and 

communication applications. 

b. Graphs are used to display routes in GPS. 

c. Graphs also help us represent the interconnections in social networks and other 

network-based applications. 

d. Graphs are utilized in mapping applications. 

e. Graphs are responsible for the representation of user preference in e-commerce 

applications. 

f. Graphs are also used in Utility networks in order to identify the problems posed to local 

or municipal corporations. 

g. Graphs also help to manage the utilization and availability of resources in an 

organization. 

h. Graphs are also used to make document link maps of the websites in order to display 

the connectivity between the pages through hyperlinks. 

i. Graphs are also used in robotic motions and neural networks. 

Basic Operations of Data Structures 

In the following section, we will discuss the different types of operations that we can perform 

to manipulate data in every data structure: 

1. Traversal: Traversing a data structure means accessing each data element exactly once 

so it can be administered. For example, traversing is required while printing the names 

of all the employees in a department. 

2. Search: Search is another data structure operation which means to find the location of 

one or more data elements that meet certain constraints. Such a data element may or 

may not be present in the given set of data elements. For example, we can use the search 

operation to find the names of all the employees who have the experience of more than 

5 years. 



19ITT101-PROGRAMMING IN C AND DATA STRUCTURE 

N.SELVAKUMAR/AP/CSE CDS 

3. Insertion: Insertion means inserting or adding new data elements to the collection. For 

example, we can use the insertion operation to add the details of a new employee the 

company has recently hired. 

4. Deletion: Deletion means to remove or delete a specific data element from the given 

list of data elements. For example, we can use the deleting operation to delete the name 

of an employee who has left the job. 

5. Sorting: Sorting means to arrange the data elements in either Ascending or Descending 

order depending on the type of application. For example, we can use the sorting 

operation to arrange the names of employees in a department in alphabetical order or 

estimate the top three performers of the month by arranging the performance of the 

employees in descending order and extracting the details of the top three. 

6. Merge: Merge means to combine data elements of two sorted lists in order to form a 

single list of sorted data elements. 

7. Create: Create is an operation used to reserve memory for the data elements of the 

program. We can perform this operation using a declaration statement. The creation of 

data structure can take place either during the following: 

1. Compile-time 

2. Run-time 

For example, the malloc() function is used in C Language to create data 

structure. 

8. Selection: Selection means selecting a particular data from the available data. We can 

select any particular data by specifying conditions inside the loop. 

9. Update: The Update operation allows us to update or modify the data in the data 

structure. We can also update any particular data by specifying some conditions inside 

the loop, like the Selection operation. 

10. Splitting: The Splitting operation allows us to divide data into various subparts 

decreasing the overall process completion time. 

 


