SNS COLLEGE OF TECHNOLOGY
(Affiliated To Anna University, Approved by AICTE - New Delhi) Accredited by NBA - AICTE and Recognized by UGC ISO 9001 : 2000 Certified Institution

FUNDAMENTALS OF ELECTRICAL ENGINEERING

LOAD (POWER CONSUMED)

- It is a any electric load on a circuit that does work.
- A device connected to the output of a circuit
> Example: Power windows, light bulbs, motors.

CIRCUIT

-Source:
A Voltage or a Current source which delivers Electrical energy

- Sink:

A Element which consumes Electrical energy
-Circuit:
Consist of a source and a sink connected with some wires forming a closed loop

CIRCUIT DEFINITIONS

- Node:

Any point where 2 or more circuit elements are connected together

- Branch:

A circuit element between two nodes

- Loop:

Collection of branches that form a closed path returning to the same node without intersecting

Would This Work?

Would This Work?

Simple Circuits

- Series circuit
- All in a row
- 1 path for electricity
- 1 light goes out and the circuit is broken

- Parallel circuit
- Many paths for electricity
- 1 light goes out and the others stay on

DIFFERENT TYPES OF CIRCUIT SERIES CIRCUIT

- One pathway for current to flow.
- Example: Old Christmas lights

PARALLEL CIRCUIT

- More then one path way for current to flow.
- Used in most electrical vehicle circuits.

SERIES RESISTANCE CIRCUIT

$\mathbf{R}_{\text {total }}=\mathbf{R}_{1}+\mathbf{R}_{2}+\mathbf{R}_{3} \ldots .$.

PARALLEL RESISTANCE CIRCUIT

EXAMPLE

- Three nodes

EXAMPLE

- 5 Branches

Example

- Three Loops, if starting at node A

AC FUNDAMENTALS

PARAMETER VALUES:

- Instantaneous (e, i)
- Peak ($\mathrm{V}_{\mathrm{m}}, \mathrm{Im}_{\mathrm{m}}$)
- Average (Vave, lave)
- RMS (V, I or Vrms, Irms)

Parameters V and I are in sine wave.

ROOT MEAN SQUARE (RMS)

Definition:
The RMS value of a set of values (or a continuoustime waveform) is the square root of the arithmetic mean of the squares of the original values.

$$
\begin{aligned}
& r m s=\frac{\text { Vpeak }}{\sqrt{2}}(\text { for an undistorted sine wave }) \\
& m s=\frac{\text { Vpeak }}{\sqrt{3}}(\text { for an undistorted triangle wave }) \\
& r m s=\frac{\text { Vpeak }}{1}(\text { for a symmetrical square wave })
\end{aligned}
$$

POWER

- The instantaneous power dissipated in a component is a product of the instantaneous voltage and the instantaneous current

$$
p=v i
$$

- In a resistive circuit the voltage and current are in phase - calculation of p is straightforward
- In reactive circuits, there will normally be some phase shift between v and i, and calculating the power becomes more complicated

1.POWER IN RESISTOR

- Suppose a voltage $v=V_{p} \sin \omega t$ is applied across a resistance R. The resultant current i will be

$$
i=\frac{v}{R}=\frac{V_{P} \sin \omega t}{R}=I_{P} \sin \omega t
$$

- The result power p will be

$$
p=v i=V_{P} \sin \omega t \times I_{P} \sin \omega t=V_{P} I_{P}\left(\sin ^{2} \omega t\right)=V_{P} I_{P}\left(\frac{1-\cos 2 \omega t}{2}\right)
$$

- The average value of $(1-\cos 2 \omega t)$ is 1 , so

$$
\text { Average Power } P=\frac{1}{2} V_{P} I_{P}=\frac{V_{P}}{\sqrt{2}} \times \frac{I_{P}}{\sqrt{2}}=V I
$$

RELATIONSHIP BETWEEN V, I AND P IN A RESISTOR

2.POWER IN CAPACITORS

- For capacitors we know that the current leads the voltage by 90°.
- Therefore, if a voltage $v=V_{p} \sin \omega t$ is applied across a capacitance C, the current will be given by $i=I_{p} \cos \omega t$
- Then

$$
\begin{aligned}
p & =v i \\
& =V_{P} \sin \omega t \times I_{P} \cos \omega t \\
& =V_{P} I_{P}(\sin \omega t \times \cos \omega t) \\
& =V_{P} I_{P}\left(\frac{\sin 2 \omega t}{2}\right)
\end{aligned}
$$

RELATIONSHIP BETWEEN V, I AND PIN A CAPACITOR

3.POWER IN INDUCTORS

- For inductors we know that the current lags the voltage by 90°.
-Therefore, if a voltage $v=V_{p} \sin \omega t$ is applied across an inductance L, the current will be given by $i=-I_{p} \cos \omega t$
-Then

$$
\begin{aligned}
p & =v i \\
& =V_{P} \sin \omega t \times-I_{P} \cos \omega t \\
& =-V_{P} I_{P}(\sin \omega t \times \cos \omega t) \\
& =-V_{P} I_{P}\left(\frac{\sin 2 \omega t}{2}\right)
\end{aligned}
$$

RELATIONSHIP BETWEEN V, I AND P IN AN INDUCTOR

ACTIVE AND REACTIVE POWER

- When a circuit has resistive and reactive parts, the resultant power has 2 parts:
- The first is dissipated in the resistive element. This is the active power, P
- The second is stored and returned by the reactive element. This is the reactive power, \boldsymbol{Q}, which has units of volt amperes reactive or var

POWERS AND UNITS

Active Power $\quad P=V I \cos \phi \quad$ watts

Reactive Power $Q=V I \sin \phi \quad$ var

Apparent Power S = VI
VA

$$
S^{2}=P^{2}+Q^{2}
$$

POWER TRIANGLE

The Power Triangle:

- Power Factor is the ratio of Active Power to Total Power:

- Power Factor is a measure of efficiency (Output/Input)

POWER FACTOR

Definition:

It is the ratio of the real power flowing to the load, to the apparent power in the circuit (or) the cosine angle of voltage and current

- Real power is the capacity of the circuit for performing work in a particular time.
- Apparent power is the product of the current and voltage of the circuit

THANKYOU..

