

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19ITB201 - DESIGN AND ANALYSIS OF ALGORITHMS

II YEAR IV SEM

UNIT-V-COPING WITH THE LIMITATIONS OF ALGORITHM

TOPIC: Approximation Algorithms for NP Hard Problems

Prepared by S.Rajasulochana, AP/IT

Approximation Algorithms for NP Hard Problems

Approximation Approach

- Difficult optimization problems (i.e., there are no known polynomial-time algorithms for these problems) can be solved approximately by a fast algorithm (i.e., polynomial-time algorithm). The found solution is approximate one, but it is close to the exact solution s^* .
- We would like to know how accurate the approximate solution s_a is. The accuracy of an approximate solution s_a is measured by *accuracy* ratio $r(s_a)$.

Approximation Approach

• For minimization problem (i.e., minimize an objective function *f*):

$$r(s_a) = \frac{f(s_a)}{f(s^*)},$$

where s^* is an exact solution to the problem.

Approximation Approach

• For maximization problem (i.e., maximize an objective function *f*):

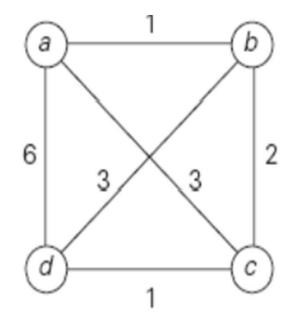
$$r(s_a) = \frac{f(s^*)}{f(s_a)}$$

where s^* is an exact solution to the problem.

• **Performance ratio** of the algorithm A, denoted R_A , is the lowest upper bound of $r(s_a)$ on all instances.

Nearest Neighbor Algorithm for TSP

- Step 1 Choose an arbitrary city as the start.
- Step 2 Repeat the following operation until all the cities have been visited: go to the unvisited city nearest the one visited last.
- **Step 3** Return to the starting city.


Nearest Neighbor Algorithm for TSP

 s_a : a - b - c - d - a of length 10

 s^* : a - b - d - c - a of length 8

$$r(s_a) = \frac{f(s_a)}{f(s^*)} = \frac{10}{8} = 1.25$$

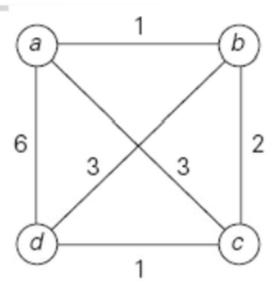
(i.e., tour s_a is 25% longer than the optimal tour s^*)

Multifragment-Heuristic Algorithm

- Step 1: Sort edges in increasing order of weights.

 Initialize the set of tour edges to be

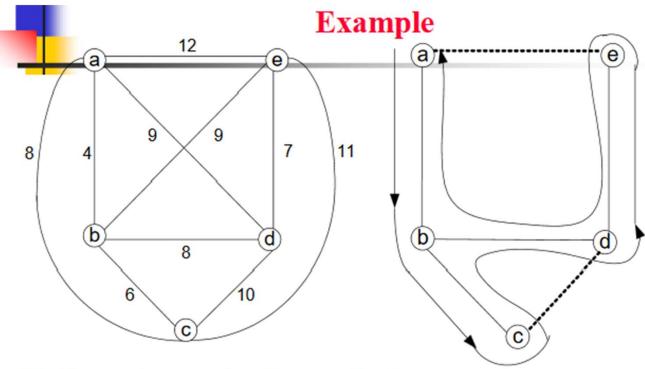
 constructed to empty set
- **Step 2**: Add next edge on the sorted list to the tour, skipping those whose addition would've created a vertex of degree 3 or a cycle of length less than *n*. Repeat this step until a tour of length *n* is obtained.
- **Step 3**: Return the set of tour edges



Multifragment-Heuristic Algorithm

$$s_a$$
: {(a, b), (c, d), (b, c), (a, d)}

Twice Around the TreeAlgorithm



- **Step 1**: Construct a minimum spanning tree of the graph (e.g., by Prim's or Kruskal's algorithm)
- **Step 2**: Starting at an arbitrary vertex, perform a walk around the minimum spanning tree recording all the vertices passed by.
- Step 3: Eliminate from the recorded list all repeated occurrences of the same vertex except the starting one at the end of the list. The vertices remaining on the list will form a Hamiltonian circuit.

Twice Around the TreeAlgorithm

Walk: a - b - c - b - d - e - d - b - a

Tour: a-b-c-d-e-a of length 39

• The tour obtained is not optimal

(better solution: 4 + 6 + 11 + 7 + 9 = 37).

1.In how many directions do queens attack each other?

- a)1
- b)2
- c)3
- d)4
- 2. Where is the n-queens problem implemented?
- a)Carom
- b)Chess
- c)Ludo
- d)Cards

Thank you