

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19ITB201 - DESIGN AND ANALYSIS OF ALGORITHMS

II YEAR IV SEM

UNIT-V-COPING WITH THE LIMITATIONS OF ALGORITHM

TOPIC: Backtracking -N Queen's Problem

Prepared by S.Rajasulochana, AP/IT

Backtracking

- Construct the *state-space tree*
 - nodes: partial solutions
 - edges: choices in extending partial solutions
- Explore the state space tree using depth-first search (dfs)
- "Prune" nonpromising nodes
 - dfs stops exploring subtrees rooted at nodes that cannot lead to a solution and backtracks to such a node's parent to continue the search

N-Queen Problem

The problem is to place n queens on an $n \times n$ chessboard so that no two queens attack each other by being in the same row or in the same column or on the same diagonal.

For n = 1, the problem has a trivial solution.

For n = 2, it is easy to see that there is no solution to place 2 queens in 2×2 chessboard.

For n = 3, it is easy to see that there is no solution to place 3 queens in 3×3 chessboard.

N-Queen Problem

- The *n*-queens problem: is to place *n* queens on an *n*-by-*n* chess board so that no two queens attack each other by being in the same row, or in the same column, or on the same diagonal.
- Solution $x = (x_1, x_2, x_3, x_4) = (2, 4, 1, 3)$

4-Queen Problem

For n = 4, There is solution to place 4 queens in 4×4 chessboard, the four-queens problem solved by the backtracking technique.

Step 1: Start with the empty board

Step 2: Place queen 1 in the first possible position of its row, which is in column 1 of row 1.

	1	2	3	4
1	Q			
2				
3				
4				

Step 3: place queen 2, after trying unsuccessfully columns 1 and 2, in the first acceptable position for it, which is square (2, 3), the square in row 2 and column 3.

	1	2	3	4
1	Q			
2			Q	
3				
4				

4-Queen Problem

Step 4: This proves to be a dead end because there is no acceptable position for queen 3. So, the algorithm backtracks and puts queen 2 in the next possible position at (2, 4).

	1	2	3	4
1	Q			
2				Q
3				
4				

Step 5: Then queen 3 is placed at (3, 2), which proves to be another dead end.

	1	2	3	4
1	Q			
2				Q
3		Q		
4				

Step 6: The algorithm then backtracks all the way to queen 1 and moves it to (1, 2).

	1	2	3	4
1		Q		
2				
3				

N-Queens Problem\19ITB201\DAA\S.Rajasulochana\AP\SNSCT

4-Queen Problem

Step 7: The queen 2 goes to (2, 4).

	1	2	3	4
1		Q		
2				Q
3				
4				

Step 8: The queen 3 goes to (3, 1).

	_1	2	3	4
1		Q		
2				Q
3	Q			
4				

Step 9: The queen 3 goes to (4, 3). This is a solution to the problem.

	1	2	3	4
1		Q		
2				Q
3	Q			
4			Q	

Solution for 4 Queens Problem

Solutions: (2, 4, 1, 3) and (3, 1, 4, 2) (reflection)

State Space Tree of 8 Queens Problem

For n = 8, There is solution to place 8 queens in 8×8 chessboard.

1.In how many directions do queens attack each other?

- a)1
- b)2
- c)3
- d)4
- 2. Where is the n-queens problem implemented?
- a)Carom
- b)Chess
- c)Ludo
- d)Cards

