

UNIT I

KRRCHOFF゚S

\square INTRODUCTION KIRCHOFF'S LAW

HISTORY OF KIRCHOFF'S LAW

INTRODUCTION

TYPES OF KIRCHOFF'S LAW

HISTORY OF KIRCHOFF'S LAW

9 | Gustav Robert |
| :---: |
| Kirchhoff |
| (German physicist) |

INTRODUCTION

- A pair of laws stating general restrictions on the current and voltage in an electric circuit.
- The first of these states that at any given instant the sum of the voltages around any closed path, or loop, in the network is zero.
How
- The second states that at any junction of paths, or node, in a network the sum of the currents arriving at any instant is equal to the sum of the currents flowing away.

TYPES OF KIRCHOFF'S LAW

G KIRCHOFF'S VOLTAGE LAW

INTRODUCTION KVL

EXERCISE

INTRODUCTION KVL

Kirchhoff's Voltage Law - KVL - is one of two fundamental laws in electrical engineering, the other being Kirchhoff's Current Law (KCL)

KVL is a fundamental law, as fundamental as Conservation of Energy in mechanics, for example, because KVL is really conservation of electrical energy

KVL and KCL are the starting point for analysis of any circuit

KCL and KVL always hold and are usually the most useful piece of information you will have about a circuit after the circuit itself

Kirchoff's Voltage Law (KVL) states that the algebraic sum of the voltages across any set of branches in a closed loop is zero. i.e.:
$\sum V_{\text {acrossbranches }}=0$

圊 Below is a single loop circuit. The KVL computation is expressed graphically in that voltages around a loop are summed up by traversing (figuratively walking around) the loop. Part of Traversal

圆 The KVL equation is obtained by traversing a circuit loop in either direction and writing down unchanged the voltage of each element whose＂+ ＂terminal is entered first and writing down the negative of every element＇s voltage where the minus sign is first met．

圆 The loop must start and end at the same point．It does not matter where you start on the loop．

Note that a current direction must have been assumed．The assumed current creates a voltage across each resistor and fixes the position of the＂+ ＂and＂－＂signs so that the passive sign con－vention is obeyed．

The assumed current direction and polarity of the voltage across each resistor must be in agreement with the passive sign convention for KVL analysis to work．

The voltages in the loop may be summed in either direction．It makes no difference except to change all the signs in the resulting equation． Mathematically speaking，its as if the KVL equation is multiplied by -1. See the illustration below．

For both summations, the assumed current direction was the same

Resulting KVL Equation: $\quad \mathrm{V}_{\mathrm{r} 1}+\mathrm{V}_{\mathrm{r} 2}+\mathrm{V}_{\mathrm{r} 3}-10=0$

Resulting KVL Equation: $-\mathrm{V}_{\mathrm{r} 1}-\mathrm{V}_{\mathrm{r} 2}-\mathrm{V}_{\mathrm{r} 3}-10=0$

For both cases shown, the direction of summation was the same

MESH ANALYSIS

* Analysis using KVL to solve for the currents around each closed loop of the network and hence determine the currents through and voltages across each elements of the network
* Mesh analysis procedure

STEP 1

Assign a distinct current to each closed loop of the network

STEP 3

Solve the resulting simultaneous linear equation for the loop currents

EXERCISE

* Exercise 1

Find the current flow through each resistor using mesh analysis for the circuit below

a EXERCISE 1

- Assign a distinct current to each closed loop of the network

- Apply KVL around each closed loop of the network
- Solve the resulting simultaneous linear equation for the loop currents

STEP 3

Loop 1:
$I_{1} R_{1}+I_{1} R_{3}+I_{2} R_{3}=V_{1}$
$10 I_{1}+40 I_{1}+40 I_{2}=10$
$50 I_{1}+40 I_{2}=10---$-equation 1

Loop 2 :
$I_{2} R_{2}+I_{2} R_{3}+I_{1} R_{3}=V_{2}$
$20 I_{2}+40 I_{2}+40 I_{1}=20$
$40 I_{1}+60 I_{2}=20---$-equation 2

$$
\begin{aligned}
& 50 I_{1}+40 I_{2}=10 \\
& 40 I_{1}+60 I_{2}=20
\end{aligned}
$$

Matrixform:

$$
\left[\begin{array}{ll}
50 & 40 \\
40 & 60
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{l}
10 \\
20
\end{array}\right]
$$

$$
\Delta=\left|\begin{array}{ll}
50 & 40 \\
40 & 60
\end{array}\right|=3000-1600=1400
$$

$$
\Delta I_{1}=\left|\begin{array}{cc}
0 & 40 \\
20 & 60
\end{array}\right|=600-800=-200
$$

$$
\Delta I_{2}=\left|\begin{array}{ll}
50 & 10 \\
40 & 20
\end{array}\right|=1000-400=600
$$

$$
I_{1}=\frac{\Delta I_{1}}{\Delta}=\frac{-200}{1400}=-0.143 \mathrm{~A}
$$

$$
I_{2}=\frac{\Delta I_{2}}{\Delta}=\frac{600}{1400}=0.429 \mathrm{~A}
$$

FromKCL:
$I_{3}=I_{1}+I_{2}=-0.143 A+0.429 A=0.286 A$

\square KIRCHOFF'S CURRENT LAW

INTRODUCTION KCL

EXERCISE

INTRODUCTION OF KCL

- Definition that will help in understanding Kirchhoff's Current Law:

Junction - A junction is any point in a circuit where two or more circuit paths come together.

Examples of a Junction

- Kirchhoff's Current Law generally states:

The algebraic sum of all currents entering (+1) and leaving $(-)$ any point (junction) in a circuit must equal zero.

- Restated as:

The sum of the currents into a junction is equal to the sum of the currents out of that junction.

- The algebraic sum of all currents entering (+) and leaving (-) any point (junction) in a circuit must equal zero.

- Here, the 3 currents entering the node, $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ are all positive in value and the 2 currents leaving the node, I_{4} and I_{5} are negative in value. Then this means we can also rewrite the equation as;

$$
I_{1}+h_{2}+l_{3}-l_{4}-I_{5}=0
$$

NODES ANALYSIS

Analysis using KCL to solve for voltages at each common node of the network and hence determine the currents though and voltages across each elements of the network.

- Determine the number of common nodes and reference node within the network
- Assign current and its direction to each distinct branch of the nodes in the network
- Apply KCL at each of the common nodes in the network

- Solve the resulting simultaneous linear equation for the node voltage
- Determine the currents through and voltages across each elements in the network

EXERCISE

Example 1:

Find the current flow through each resistor using node analysis for the circuit below.

EXERCISE

REMEMBER THE STEPS EARLIER??

Determine the number of common nodes and reference node within the network.
1 common node (Va) and 1 reference node C

Assign current and its direction to each distinct branch of the nodes in the network (refer o the figure)

Apply KCL at each of the common nodes in the network
KCL: $11+12=13$

$$
\begin{aligned}
& \frac{(10-\mathrm{Va})}{10}+\frac{(20-\mathrm{Va})}{20}=\frac{\mathrm{Va}}{40} \\
& 1-\frac{\mathrm{Va}}{10}+1-\frac{\mathrm{Va}}{20}=\frac{\mathrm{Va}}{40} \\
& \frac{\mathrm{Va}}{40}+\frac{\mathrm{Va}}{10}+\frac{\mathrm{Va}}{20}=2 \\
& \operatorname{Va}\left(\frac{1}{40}+\frac{1}{4}+\frac{1}{2}\right)=2 \\
& \operatorname{Va}\left(\frac{7}{40}=2\right. \\
& \mathrm{Va}=11.428 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}_{1}=\frac{(10-11.428)}{10}=-0.143 \mathrm{~A} \\
& \mathrm{I}_{2}=\frac{(20-11.428)}{20}=0.429 \mathrm{~A} \\
& \mathrm{I}_{3}=\frac{11.428}{40}=0.286 \mathrm{~V}
\end{aligned}
$$

Example 2:

Find the current flow through each resistor using node analysis for the circuit below.

REMEMBER THE STEPS EARLIER??

> Determine the number of common nodes and reference node within the network.
> 1 common node (Va) and 1 reference node C

Apply KCL at each of the common nodes in the network
KCL: $11=12+13$
$\frac{(40-\mathrm{Va})}{5 \mathrm{k}}=\frac{(\mathrm{Va}-(-55))}{3 \mathrm{k}}+\frac{\mathrm{Va}}{6 \mathrm{k}}$ $\frac{40}{6 \mathrm{k}}-\frac{\mathrm{Va}}{6 \mathrm{k}}=\frac{\mathrm{Va}}{3 \mathrm{k}}+\frac{55}{3 \mathrm{k}}+\frac{\mathrm{Va}}{6 \mathrm{k}}$
$(-\mathrm{Va})$ - $\underline{\mathrm{Va}}$ - $\underline{\mathrm{Va}}=\underline{55}$ - 40
$5 \mathrm{k} \quad 3 \mathrm{k} \quad 6 \mathrm{k} \quad 3 \mathrm{k} \quad 5 \mathrm{k}$
$-\operatorname{Va}\left(\frac{1}{5 \mathrm{k}}+\frac{1}{3 \mathrm{k}}+\frac{1}{6 \mathrm{k}}=\frac{55}{3 \mathrm{k}}-\frac{40}{5 \mathrm{k}}\right.$
$-\operatorname{Va}\left(700 \times 10^{-6}\right)=10.33 \times 10^{-3}$
$\mathrm{Va}=-14.757 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{I}_{1}=\frac{(40-(-14.757))}{5 \mathrm{k}}=10.95 \mathrm{~mA} \\
& \mathrm{I}_{2}=\frac{(-14.757+55)}{3 \mathrm{k}}=13.41 \mathrm{~mA} \\
& \mathrm{I}_{3}=\frac{(-14.757)}{6 \mathrm{k}}=-2.46 \mathrm{~mA}
\end{aligned}
$$

Kirchhoff's

 First Law

KOLisueghhensoling circuits wh..

Closed loops

Sufficient nodes/ junctions

Capacitors

None

Question 3

Nodal Analysis applies the following principles

KVL \& Ohm's Law

KCL \& Ohm's Law
KVL \& Superposition
KCL \& Superposition

Which of the following statements is

 true?

Mesh Analysis is easiest when a circuit has more than two nodes

Mesh Analysis is more difficult than Nodal Analysis

Mesh Analysis employs KVL to solve loop currents

All of t All of the above

If a circuit contains three loops, how many independent equations can be obtained with Kirchhoff's Second laws?

How much is current I_{3} in the node shown?

Question 6

8A

How much is current I_{4} in the node shown?

8A

How much is voltage V_{3} in the closed loop circuit shown?

How much is voltage V_{4} in the closed loop circuit shown?

-REFERENCES

DET1013: ELECTRICAL
TECHNOLOGY

DET1013: ELECTRICAL
TECHNOLOGY

SPECIAL THANKS TO

- JABATAN PENGAJIAN POLITEKNIK
- CelT
- CIDOS
- POLITEKNIK MUKAH, SARAWAK
- POLITEKNIK KOTA KINABALU, SABAH
- POLITEKNIK MUADZAM SHAH,

PAHANG

- POLITEKNIK KOTA BHARU, KELANTAN

DET1013: ELECTRICAL
TECHNOLOGY

