

Identify the problem

Sorting

Problem Example

Quick Sort

Divide and Conquer

Problem Example

Quick Sort

Partition set into two using randomly chosen pivot

Quick Sort

sort the first half.

sort the second half.

Quick Sort

Glue pieces together.

$$
14,23,25,30,31,52,62,79,88,98
$$

Quicksort

- Quicksort pros [advantage]:
- Sorts in place
- Sorts $O(n \lg n)$ in the average case
- Very efficient in practice, it's quick

Quicksort cons [disadvantage]:

- - Sorts $O\left(n^{2}\right)$ in the worst case
- And the worst case doesn't happen often ... sorted

Quicksort

Another divide-and-conquer algorithm:
Divide: $\boldsymbol{A}[\boldsymbol{p} \ldots \boldsymbol{r}]$ is partitioned (rearranged) into two nonempty subarrays $\boldsymbol{A}[\boldsymbol{p} \ldots \boldsymbol{q}-\mathbf{1}]$ and $\boldsymbol{A}[\boldsymbol{q}+\mathbf{1} \ldots \boldsymbol{r}]$ s.t. each element of $A[p \ldots q-1]$ is less than or equal to each element of $A[q+1 \ldots r]$. Index q is computed here, called pivot.

Conquer: two subarrays are sorted by recursive calls to quicksort.
Combine: unlike merge sort, no work needed since the subarrays are sorted in place already.

Algorithm

ALGORITHM Quicksort(A[l..r])
//Sorts a subarray by quicksort
//Input: Subarray of array $A[0 . . n$
1], defined by its left and right //indices land r
//Output: Subarray $A[l . . r]$ sorted in nondecreasing order
if $l<r$
$s \leftarrow \operatorname{Partition}(A[l . . r]) / / s$ is a split position
Quicksort(A[l...s -1])
Quicksort(A[s +1.....r])

Algorithm

ALGORITHM HoarePartition(A[l..r])

//Partitions a subarray by Hoare's algorithm, using the first element //as a pivot
$/ /$ Input: Subarray of array $A[0 . . n-1]$, defined by its left and right //indices l and $r(l<r)$
//Output: Partition of $A[l . . r]$, with the split position returned as //this function's value
$\mathrm{P}=\mathrm{A}[1]$
$\mathrm{i}=1 ; \mathrm{j}=\mathrm{r}+1$;
repeat

$$
\text { repeat } \mathrm{i}=\mathrm{i}+1 \text { until } \mathrm{A}[\mathrm{i}]>=\mathrm{p}
$$

$$
\text { repeat } j=j-1 \text { until } A[j]<=p
$$

$\operatorname{swap}(A[i], A[j])$
Until $i>=j$
$\operatorname{swap}(A[i], A[j]) / / u n d o$ last swap when $i>=j$
Swap ($A[l], A[j])$
return j

Complexity Analysis of Quick Sort

Worst Case Time Complexity [Big-O]: O($\left.\mathbf{n}^{\mathbf{2}}\right)$
Best Case Time Complexity [Big-omega]: $\mathbf{O}(\mathbf{n} * \log \mathbf{n})$

Average Time Complexity [Big-theta]: $\mathbf{O}(\mathbf{n} * \log \mathbf{n})$
Space Complexity: $\mathbf{O}\left(\mathbf{n}^{*} \log \mathbf{n}\right)$
Thank you!

