

http://www.free-powerpoint-templates-design.com/free-powerpoint-templates-design

Problem Example

Quick Sort

Problem Example
Quick Sort

Partition set into two using
randomly chosen pivot

Quick Sort

sort the first half. sort the second hallf.
N ¥ 4

K 14,23,25,30,31 ﬁ 62,79,98,88

Quick Sort

e | 14,23,25,30,31 /

i E / 62,79,88,98

Glue pieces together.

14,23,25,30,31,52,62,79,88,98

Quicksort

* Quicksort pros [advantage]:

— Sorts in place
— Sorts O(n Ig n) in the average case

— Very efficient in practice , it’s quick

Quicksort cons [disadvantage]:
* — Sorts O(n?) in the worst case
— And the worst case doesn’t happen often ... sorted

Quicksort

Another divide-and-conquer algorithm:

Divide: A[p...r] is partitioned (rearranged) into two nonempty
subarrays A[p...g-1] and A[g+1...r] s.t. each element of A[p...q-1] is
less than or equal to each element of A[g+1...r]. Index g is computed
here, called pivot.

Conquer: two subarrays are sorted by recursive calls to quicksort.

Combine: unlike merge sort, no work needed since the subarrays are
sorted in place already.

Algorithm

ALGORITHM Quicksort(A[l..r])

//Sorts a subarray by quicksort

[/Input: Subarray of array A[O..n 1], defined by its left and right
/lindices land r

/[Output: Subarray A[l..r] sorted in nondecreasing order

ifl<r

s «—Partition(A[l..r]) //s is a split position

Quicksort(A[/....s —1])

Quicksort(A[s +1.....r])

Algorithm

ALGORITHM HoarePartition(A[l..r])

//Partitions a subarray by Hoare’s algorithm, using the first element
//as a pivot

[Nnput: Subarray of array A[0..n-1], defined by its left and right
/lindices land r (1 <r)

/[Output: Partition of A[l..r], with the split position returned as
//this function’s value

P=A[l]
I=l;j=r+1,
repeat
repeat i=i+1 until A[i]>=p
repeat j=j-1 until A[j]<=p
swap(A[i], Al])
Until i>=j
swap(A[i], A[j]) //undo last swap when i>=j
— Swap(AlLAG)D
return j

 Complexity Analysis of Quick Sort
Worst Case Time Complexity [Big-O]: O(n?)

Best Case Time Complexity [Big-omega]: O(n*log n)

Average Time Complexity [Big-theta]: O(n*log n)

Space Complexity: O(n*log n)

