
ALLPPT.com _ Free PowerPoint Templates, Diagrams and Charts

quick sort

http://www.free-powerpoint-templates-design.com/free-powerpoint-templates-design

Identify the problem

Sorting

Problem Example

Problem Example

Quicksort

• Quicksort pros [advantage]:

– Sorts in place

– Sorts O(n lg n) in the average case

– Very efficient in practice , it’s quick

•

Quicksort cons [disadvantage]:

– Sorts O(n2) in the worst case

– And the worst case doesn’t happen often … sorted

Quicksort

Another divide-and-conquer algorithm:

Divide: A[p…r] is partitioned (rearranged) into two nonempty
subarrays A[p…q-1] and A[q+1…r] s.t. each element of A[p…q-1] is
less than or equal to each element of A[q+1…r]. Index q is computed
here, called pivot.

Conquer: two subarrays are sorted by recursive calls to quicksort.

Combine: unlike merge sort, no work needed since the subarrays are

sorted in place already.

•

Algorithm

ALGORITHM Quicksort(A[l..r])

//Sorts a subarray by quicksort

//Input: Subarray of array A[0..n 1], defined by its left and right

//indices l and r

//Output: Subarray A[l..r] sorted in nondecreasing order

if l < r

s ←Partition(A[l..r]) //s is a split position

Quicksort(A[l….s − 1])

Quicksort(A[s + 1…..r])

Algorithm
ALGORITHM HoarePartition(A[l..r])

//Partitions a subarray by Hoare’s algorithm, using the first element

//as a pivot

//Input: Subarray of array A[0..n-1], defined by its left and right

//indices l and r (l < r)

//Output: Partition of A[l..r], with the split position returned as

//this function’s value

P=A[l]

i=l;j=r+1;

repeat

 repeat i=i+1 until A[i]>=p

 repeat j=j-1 until A[j]<=p

swap(A[i], A[j])

Until i>=j

swap(A[i], A[j]) //undo last swap when i>= j

Swap (A[l], A[j])

return j

Worst Case Time Complexity [Big-O]: O(n2)

Best Case Time Complexity [Big-omega]: O(n*log n)

Average Time Complexity [Big-theta]: O(n*log n)

Space Complexity: O(n*log n)

Complexity Analysis of Quick Sort

