SNS COLLEGE OF TECHNOLOGY

An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19 ITB201 - DESIGN AND ANALYSIS OF ALGORITHMS

II YEAR IV SEM

UNIT-II-BRUTE FORCE AND DIVIDE AND CONQUER
TOPIC: Divide and Conquer -Merge Sort
Prepared by
T.Shanmugapriya,AP/IT

Problem

Problem Example

General Method

Divide and conquer algorithm consists of two parts:

Divide :Divide the problem into a number of sub problems. The sub proble ms are solved recursively.
Conquer :The solution to the original problem is then formed from the sol utions to the sub problems (patching together the answers).

Control Abstraction of Divide and Conquer

```
DANDC (P)
{
if SMALL (P) then return S (p); else
{
divide p into smaller instances }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\ldots.. P P , k 3 1; apply DANDC to each of these sub pr
blems;
return (COMBINE (DANDC ( }\mp@subsup{\textrm{p}}{1}{}),\mathrm{ DANDC ( }\mp@subsup{\textrm{p}}{2}{}),\ldots., DANDC ( pk );
}
}
```


If the sizes of the two sub problems are approximately equal then the computing time of DANDC is:

$$
T(n)= \begin{cases}g(n) & n \text { small } \\ 2 T(n / 2)+f(n) & \text { otherwise }\end{cases}
$$

Where, T (n) is the time for DANDC on ' n ' inputs
$g(n)$ is the time to complete the answer directly for small inputs and $f(n)$ is the time for Divide and Combine

Applications

Min max

$$
\begin{aligned}
+3 x^{-8}-2-2 & =(+3 x-8) \times-2 \\
& =(24) \times-2
\end{aligned}
$$

Large Interger multiplication

Merge sort

$>$ Merge sort algorithm is a classic example of divide and conquer. To sort an array, recursively, sort its left and right halves separately and then merge them.
> The time complexity of merge mort in the best case, worst case an d average case is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ and the number of comparisons used i s nearly optimal.

Algorithm MERGESORT (low, high)
// a (low : high) is a global array to be sorted.
\{
iptr
if (low $<$ high)
\{
mid $:=($ low + high $) / 2 \quad / /$ finds where to split the set
MERGESORT(low, mid)//sort one subset
MERGESORT(mid+1, high) //sort the other subset MERGE(low, mid, high) // combine the results
\}\}

Algorithm MERGE (low, mid, high)
// a (low : high) is a global array containing two sorted subsets // in a (low : mid) and in a (mid +1 : high).
// The objective is to merge these sorted set sinto single sorted
// set residing in a (low : high). An auxiliary array B is used.


```
    h :=low; i := low; j:= mid + 1;
    while ( \((\mathrm{h} \leq\) mid \()\) and ( \(\mathrm{J} \leq\) high) \()\) do
    \{
        if \((a[h] \leq a[j])\) then
            \{
                        \(\mathrm{b}[\mathrm{i}]:=\mathrm{a}[\mathrm{h}] ; \mathrm{h}:=\mathrm{h}+1\);
        \}
        else
        \(\mathrm{b}[\mathrm{i}]:=\mathrm{a}[\mathrm{j}] ; \mathrm{j}:=\mathrm{j}+1\);
        \}
            \(\mathrm{i}:=\mathrm{i}+1 ;\)
        \}
        if ( \(\mathrm{h}>\mathrm{mid}\) ) then
            for \(\mathrm{k}:=\mathrm{j}\) to high do
            \{
                    \(\mathrm{b}[\mathrm{i}]:=\mathrm{a}[\mathrm{k}] ; \mathrm{i}:=\mathrm{i}+1\);
            \}
        else
            for \(\mathrm{k}:=\mathrm{h}\) to mid do
            \{
                \(\mathrm{b}[\mathrm{i}]:=\mathrm{a}[\mathrm{K}] ; \mathrm{i}:=\mathrm{i}+\mathrm{I} ;\)
        fork \(:=\) low to high
            \(\mathrm{a}[\mathrm{k}]:=\mathrm{b}[\mathrm{k}]\);
```

 \}

Example

For example let us select the following 8 entries $7,2,9,4,3,8,6,1$ to illustrate merge sort algorithm:

Analysis of Merge Sort

We will assume that ' n ' is a power of 2 , so that we always split into even halves, so we solve for the case $n=2^{k}$.

For $\mathrm{n}=1$, the time to merge sort is constant, which we will be denote by 1 . Otherwise, the time to merge sort ' n ' numbers is equal to the time to do two recursive merge sorts of size $\mathrm{n} / 2$, plus the time to merge, which is linear. The equation says this exactly:
$\mathrm{T}(1)=1$
$\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}$

This is a standard recurrence relation, which can be solved several ways. We will solve by substituting recurrence relation continually on the right-hand side.

We have, $T(n)=2 T(n / 2)+n$

Since we can substitute n/2 into this main equation

$$
\begin{aligned}
2 T(n / 2) & =2(2(T(n / 4))+n / 2) \\
& =4 T(n / 4)+n
\end{aligned}
$$

We have,

$$
\begin{aligned}
T(n / 2) & =2 T(n / 4)+n \\
T(n) & =4 T(n / 4)+2 n
\end{aligned}
$$

Again, by substituting n/4 into the main equation, we see that

$$
\begin{aligned}
4 T(n / 4) & =4(2 T(n / 8))+n / 4 \\
& =8 T(n / 8)+n
\end{aligned}
$$

Sowe have,

$$
\begin{aligned}
T(n / 4) & =2 T(n / 8)+n \\
T(n) & =8 T(n / 8)+3 n
\end{aligned}
$$

Continuing in this manner, we obtain:
$T(n)$

$$
=2^{k} T\left(n / 2^{k}\right)+k \cdot n
$$

As $n=2^{k}, k=\log _{2} n$, substituting this in the above equation

$$
\begin{array}{rl}
T(n)=2^{\log _{2} n} & T\left(\frac{\left.R^{k}\right)}{2}-\log _{2} n \cdot n\right. \\
& =n T(1)+n \log n \\
& =n \log n+n
\end{array}
$$

$$
=n \log n+n
$$

Representing this in O notation:

$$
T(n)=O(n \log n)
$$

Thank you!

