

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19ITB201 – DESIGN AND ANALYSIS OF ALGORITHMS

II YEAR IV SEM

UNIT-II-BRUTE FORCE AND DIVIDE AND CONQUER

TOPIC: Brute Force-Assignment Problem

Prepared by T.Shanmugapriya,AP/IT

- Traveling Salesman Problem
- Knapsack Problem
- Assignment problem

08.02.2021 Unit II

Brute Force-Assignment problem

T.Shanmugapriya,AP/IT

Exhaustive search is simply a brute-force approach to combinatorial problems such as permutation, combination and sum of subsets

The method:

- Generate a list of all the potential solutions to the problem
- selectthe solution that satisfy all the constraints, and then
- Find the desired solution that optimizes some objective function.

T.Shanmugapriya,AP/IT

Assignment problem:

There are n people who need to be assigned to n jobs, one person per job. The cost of assi gning person i to job j is C[i,j]. Find an assignment that minimizes the total cost.

	Job 1	Job 2	Job 3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

08.02.2021 Unit II

Brute Force-Assignment problem

T.Shanmugapriya, AP/IT

Algorithmic Plan:

- Generate all legitimate assignments,
- compute their costs, and
- select the cheapest one.

We can describe feasible solutions to the assignment problem as

n-tuples $\langle j1, \ldots, jn \rangle$ in which the *i*th component = 1, ..., *n*, indicates the column of the element selected in the *i* th row (i.e., the job number assigned to the *i*th person). For e xample, for the cost matrix above, $\langle 2, 3, 4, 1 \rangle$ indicates the assignment of Person 1 to Job 2, Person 2 to Job 3, Person 3 to Job 4, and Person 4 to Job 1.

08.02.2021 Unit II

Brute Force-Assignment problem

					<1, 2, 3, 4>	cost = 9 + 4 + 1 + 4 = 18	
C=	9	2	7	8	<1, 2, 4, 3>	cost = 9 + 4 + 8 + 9 = 30	
	6	4	3	7	<1, 3, 2, 4>	cost = 9 + 3 + 8 + 4 = 24	
	5	8	1	8	<1, 3, 4, 2>	cost = 9 + 3 + 8 + 6 = 26	etc.
	7	6	9	4	<1, 4, 2, 3>	cost = 9 + 7 + 8 + 9 = 33	
j				270	<1, 4, 3, 2>	cost = 9 + 7 + 1 + 6 = 23	

(First few iterations of solving a small instance of the assignment problem by exhaustive search)

Analysis: T(n)=n!

08.02.2021 Unit II

Brute Force-Assignment problem

T.Shanmugapriya, AP/IT

6/7

