





(An Autonomous Institution) Coimbatore – 641 035, Tamil Nadu

## **DEPARTMENT OF AEROSPACE ENGINEERING**

**19ASB304** Computational Fluid Dynamics for Aerospace

By

**NEHRU.K** 

**Assistant Professor** 

**Aerospace Engineering** 





Particle Acceleration



Tracking the particle as we follow it path:  $\vec{V}_{P@timet} = \vec{V}(x, y, z, t)$ Note: V(x,y,z,t) is the velocity field of the entire flow, not the velocity of a particle. As the particle moves, its velocity changes to  $\vec{V}_{P@timet+dt} = \vec{V}(x + dx, y + dy, z + dz, t + dt)$ 

The acceleration of a particle (substantial acceleration) is given by

$$\vec{a}_{P} = \frac{d\vec{V}_{P}}{dt} = \frac{\partial\vec{V}}{\partial t} + \frac{\partial\vec{V}}{\partial x}\frac{dx_{P}}{dt} + \frac{\partial\vec{V}}{\partial y}\frac{dy_{P}}{dt} + \frac{\partial\vec{V}}{\partial z}\frac{dz_{P}}{dt}$$
$$= \frac{\partial\vec{V}}{\partial t} + u\frac{\partial\vec{V}}{\partial x} + v\frac{\partial\vec{V}}{\partial y} + w\frac{\partial\vec{V}}{\partial z}. \quad \text{where } u = \frac{dx_{P}}{dt}, \quad v = \frac{dy_{P}}{dt}, \quad w = \frac{dz_{P}}{dt}$$





### Example



An incompressible, inviscid flow past a circular cylinder of diameter d is shown below. The flow variation along the approaching stagnation streamline (A-B) can be expressed as:



U<sub>o</sub>=1 m/s

Along A-B streamline, the velocity drops very fast as the particle approaches the cylinder. At the surface of the cylinder, the velocity is zero (stagnation point) and the surface pressure is a maximum.

#### 19ASB304-CFD<mark>/NEHRU.K/AERO/SNSCT</mark>



Example (cont.)



Determine the acceleration experienced by a particle as it flows along the stagnation streamline.

 $\vec{a} = \frac{D\vec{V}}{Dt} = \frac{\partial\vec{V}}{\partial t} + u\frac{\partial\vec{V}}{\partial x} + 0 + 0, \text{ since } v = w = 0 \text{ along the stagnation streamline.}$ Therefore,  $a_x = \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x}, a_y = a_z = 0, a_x = (1 - \frac{1}{x^2})(\frac{2}{x^3})$  for steady state flow



• The particle slows down due to the strong deceleration as it approaches the cylinder.

• The maximum deceleration occurs at x=-1.29R=-1.29 m with a magnitude of a(max)=-0.372(m/s<sup>2</sup>)



# Example (cont.)



Determine the pressure distribution along the streamline using Bernoulli's equation. Also determine the stagnation pressure at the stagnation point.

Bernoulli's equation: 
$$\frac{P(x)}{\rho} + \frac{u^2(x)}{2} = \frac{P_{\infty}}{\rho} + \frac{U_0^2}{2}$$
$$P(x) - P_{atm} = \frac{\rho}{2} (U_0^2 - u^2(x)) = \frac{\rho}{2} \left( 1 - \left( 1 - \frac{1}{x^2} \right) \right) = \frac{\rho}{2} \left( \frac{1}{x^2} \right)$$
$$\Delta P(x) = \frac{P(x) - P_{atm}}{\rho} = \frac{1}{2x^2}$$



• The pressure increases as the particle approaches the stagnation point.

• It reaches the maximum value of 0.5, that is  $P_{stag}$ -

 $P_{\infty}=(1/2)\rho U_0^2$  as  $u(x) \rightarrow 0$  near the stagnation point.



Momentum Conservation



From Newton's second law : Force = (mass)(accderation)Consider a small element  $\partial x \partial y \partial z$  as shown below.

The element experiences an acceleration



y

Ζ

Х

 $\tau_{vx}\delta x\delta z^{-}$ 



Momentum Balance (cont.)



Net force acting along the x-direction:



The differential momentum equation along the x-direction is

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \tau_{zx}}{\partial x} + \rho g_x = \rho \left( \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right)$$

similar equations can be derived along the y & z directions



## **Euler's Equations**



For an inviscid flow, the shear stresses are zero and the normal stresses are simply the pressure:  $\tau = 0$  for all shear stresses,  $\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = -P$ 

$$-\frac{\partial P}{\partial x} + \rho g_x = \rho \left( \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right)$$

Similar equations for y & z directions can be derived

$$-\frac{\partial P}{\partial y} + \rho g_{y} = \rho \left( \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right)$$
$$-\frac{\partial P}{\partial z} + \rho g_{z} = \rho \left( \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right)$$

Note: Integration of the Euler's equations along a streamline will give rise to the Bernoulli's equation.



## Navier and Stokes Equations



For a viscous flow, the relationships between the normal/shear stresses and the rate of deformation (velocity field variation) can be determined by making a simple assumption.

That is, the stresses are linearly related to the rate of deformation (Newtonian fluid).

The proportional constant for the relation is the dynamic viscosity of the fluid ( $\mu$ ).

Based on this, Navier and Stokes derived the famous Navier-Stokes equations:

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = -\frac{\partial P}{\partial x} + \rho g_x + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$
$$\rho\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) = -\frac{\partial P}{\partial y} + \rho g_y + \mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right)$$
$$\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) = -\frac{\partial P}{\partial z} + \rho g_z + \mu\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right)$$





