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Particle Acceleration 

Particle P@time t

Tracking the particle as we follow it path:

V ( , , , )

Note: V(x,y,z,t) is the velocity field of the 

entire flow, not the velocity of a particle.

As the particle moves, its velocity changes t

V x y z t

P@time t dt

o

V ( , , , )V x dx y dy z dz t dt     

t t+dt 

P

The acceleration of a particle (substantial acceleration) is given by

a

. where u , ,

P P P P

P P P

dV dx dy dzV V V V

dt t x dt y dt z dt

dx dy dzV V V V
u v w v w

t x y z dt dt dt

   
    

   

   
      
   
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Physical Interpretation 

P

DV V V V V
a u v w

Dt t x y z

   
    

   

Total acceleration 
of a particle 

Local 
acceleration 

Convective acceleration 

time 

velocity 

Unsteady flow Steady flow 

x 

velocity 

acceleration 
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Example 
An incompressible, inviscid flow past a circular cylinder of diameter d is shown below.  The flow variation along the 
approaching stagnation streamline (A-B) can be expressed as:  

2

O 2 2

1
( , 0) ( ) , where u(x) U (1 ) 1

R
V x y u x i

x x
     
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y 

A B 
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u x( )

x
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0
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1

Along A-B streamline, the velocity drops very fast as the particle 
approaches the cylinder.  At the surface of the cylinder, the velocity is zero (stagnation point) and the 
surface pressure is a maximum. 
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Example (cont.) 

Determine the acceleration experienced by a particle as it flows along the stagnation streamline. 

x 2 3

0 0, since v w 0 along the stagnation streamline.

1 2
Therefore, a , 0, (1 )( ) for steady state flowy z x

DV V V
a u

Dt t x

u u
u a a a

t x x x

 
      

 

 
     
 

0

0.4

a x( )

15 x
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0.4

0.2

0

• The particle slows down due to the strong deceleration as 
it approaches the cylinder. 
• The maximum deceleration occurs at x=-1.29R=-1.29 m 
with a magnitude of a(max)=-0.372(m/s2) 
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Example (cont.) 
Determine the pressure distribution along the streamline using Bernoulli’s equation.  Also determine the stagnation 
pressure at the stagnation point. 

22

2 2

2 2

2

P(x) u ( )
Bernoulli's equation: 

2 2

1 1
( ) ( ( )) 1 1

2 2 2

( ) 1
( )

2

O

atm O
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UPx

P x P U u x
x x

P x P
P x

x

 

  
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  

    
          

    


  

P x( )

x
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0
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0.6
• The pressure increases as the particle approaches the 
stagnation point. 
• It reaches the maximum value of 0.5, that is Pstag-
P=(1/2)UO

2 as u(x)0 near the stagnation point. 

6/23/2023 19ASB304-CFD/NEHRU.K/AERO/SNSCT 6 



Momentum Conservation 

below.shown  as zyxelement  small aConsider 

leration)mass)(acce(Force:law second sNewton' From





x 

y 

z 

The element experiences an acceleration

DV
m ( )

Dt

as it is under the action of various forces:

normal stresses, shear stresses, and gravitational force.

V V V V
x y z u v w

t x y z
   

    
    

    

xx
xx x y z

x


   

 
 

 
xx y z  

yx

yx y x z
y


   

 
 

 

yx x z  
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Momentum Balance (cont.) 

yxxx zx

Net force acting along the x-direction:

x x x
xx y z x y z x y z g x y z

 
            

 
  

  

Normal stress Shear stresses (note: zx: shear stress acting on surfaces 
perpendicular to the z-axis, not shown in previous slide) 

Body force 

yxxx zx

The differential momentum equation along the x-direction is

x x x

similar equations can be derived along the y & z directions

x

u u u u
g u v w

t x y z

 
 

      
       

       
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Euler’s Equations 

xx yy zz

For an inviscid flow, the shear stresses are zero and the normal stresses

are simply the pressure: 0 for all shear stresses, 

x

Similar equations for

x

P

P u u u u
g u v w

t x y z

   

 

    

     
      
     

 y & z directions can be derived

y

z

y

z

P v v v v
g u v w

t x y z

P w w w w
g u v w

t x y z

 

 

     
      
     

     
      
     

Note: Integration of the Euler’s equations along a streamline will give rise to the Bernoulli’s equation. 
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Navier and Stokes Equations 

For a viscous flow, the relationships between the normal/shear stresses and the rate of deformation (velocity field 
variation) can be determined by making a simple assumption.   
That is, the stresses are linearly related to the rate of deformation (Newtonian fluid).  
The proportional constant for the relation is the dynamic viscosity of the fluid (m).   
Based on this, Navier and Stokes derived the famous Navier-Stokes equations: 

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

x

y

z

x

y

z

u u u u P u u u
u v w g

t x y z x y z

v v v v P v v v
u v w g

t x y z x y z

w w w w P w w w
u v w g

t x y z x y z

  m

  m

  m

         
          

          

         
          

          

         
         

          

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