SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE-35
Accredited by NBA-AICTE and Accredited by NAAC - UGC with A+ Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

19EEB102 / ELECTRIC CIRCUIT ANALYSIS
 I YEAR / II SEMESTER
 UNIT-III: AC CIRCUITS

POWER AND POWER FACTOR

TOPIC OUTLINE

-AC Power
 -Types of Power
 -Power Factor

- Suppose a voltage $v=V_{p} \sin \omega t$ is applied across a resistance R. The resultant current i will be

$$
i=\frac{v}{R}=\frac{V_{P} \sin \omega t}{R}=I_{P} \sin \omega t
$$

- The result power p will be

$$
p=v i=V_{P} \sin \omega t \times I_{P} \sin \omega t=V_{P} I_{P}\left(\sin ^{2} \omega t\right)=V_{P} I_{P}\left(\frac{1-\cos 2 \omega t}{2}\right)
$$

- The average value of $(1-\cos 2 \omega t)$ is 1 , so

Average Power $P=\frac{1}{2} V_{P} I_{P}=\frac{V_{P}}{\sqrt{2}} \times \frac{I_{P}}{\sqrt{2}}=V I$
where V and I are the RMS voltage and current

RELATIONSHIP BETWEEN V, I AND P IN A RESISTOR

2.POWER IN CAPACITORS

- For capacitors we know that the current leads the voltage by 90°.
- Therefore, if a voltage $v=V_{p} \sin \omega t$ is applied across a capacitance C, the current will be given by $i=I_{\beta} \underset{=v i}{\cos } \omega t$
- Then

$$
\begin{aligned}
& =V_{P} \sin \omega t \times I_{P} \cos \omega t \\
& =V_{P} I_{P}(\sin \omega t \times \cos \omega t) \\
& =V_{P} I_{P}\left(\frac{\sin 2 \omega t}{2}\right)
\end{aligned}
$$

3.POWER IN INDUCTORS

or inductors we know that the current logs the voltage by 90°.
-Therefore, if a voltage $v=V_{p} \sin \omega t$ is applied across an inductance L, the current will be given by $i=-I_{p} \cos \omega t$
-Then

$$
\begin{aligned}
p & =v i \\
& =V_{P} \sin \omega t \times-I_{P} \cos \omega t \\
& =-V_{P} I_{P}(\sin \omega t \times \cos \omega t) \\
& =-V_{P} I_{P}\left(\frac{\sin 2 \omega t}{2}\right)
\end{aligned}
$$

POWER

LOAD (POWER CONSUMED)

- It is a any electric load on a circuit that does work.
- A device connected to the output of a circuit
- Example: Power windows, light bulbs, motors.

POWER - TYPES

- Real power is the capacity of the circuit performing work in a particular time.
- It is the product of V, I and cosine angle of voltage and current
- Apparent power is the product of the current and voltage of the circuit
-Reactive power is the product of V, I and sine angle of voltage and current

POWER

Real Power
Reactive Power
$P=V I \cos \phi \quad$ watts or kW
$\mathrm{Q}=V I \sin \phi \quad$ var or kVAR
Apparent Power $\quad S=V I \quad$ VA or kVA

$$
S^{2}=P^{2}+Q^{2}
$$

REAL AND REACTIVE POWER

If a circuit has resistive and reactive parts, the resultant power has 2 parts:

- The first is dissipated in the resistive element. This is the real power, P
- The second is stored and returned by the reactive element. This is the reactive power, \boldsymbol{Q}, which has units of volt amperes reactive or var

RELATIONSHIP BETWEEN V, I AND P IN A RESISTOR

POWER TRIANGLE

The Power Triangle:

POWER FACTOR

- Power Factor is the ratio of Active Power to Total Power:

- Power Factor is a measure of efficiency (Output/..np

RECAP....

...THANK YOU

